Publications by authors named "Jana Kozáková"

16 Publications

  • Page 1 of 1

Global Landscape Review of Serotype-Specific Invasive Pneumococcal Disease Surveillance among Countries Using PCV10/13: The Pneumococcal Serotype Replacement and Distribution Estimation (PSERENADE) Project.

Microorganisms 2021 Apr 2;9(4). Epub 2021 Apr 2.

National Public Health Organisation, 15123 Athens, Greece.

Serotype-specific surveillance for invasive pneumococcal disease (IPD) is essential for assessing the impact of 10- and 13-valent pneumococcal conjugate vaccines (PCV10/13). The Pneumococcal Serotype Replacement and Distribution Estimation (PSERENADE) project aimed to evaluate the global evidence to estimate the impact of PCV10/13 by age, product, schedule, and syndrome. Here we systematically characterize and summarize the global landscape of routine serotype-specific IPD surveillance in PCV10/13-using countries and describe the subset that are included in PSERENADE. Of 138 countries using PCV10/13 as of 2018, we identified 109 with IPD surveillance systems, 76 of which met PSERENADE data collection eligibility criteria. PSERENADE received data from most (n = 63, 82.9%), yielding 240,639 post-PCV10/13 introduction IPD cases. Pediatric and adult surveillance was represented from all geographic regions but was limited from lower income and high-burden countries. In PSERENADE, 18 sites evaluated PCV10, 42 PCV13, and 17 both; 17 sites used a 3 + 0 schedule, 38 used 2 + 1, 13 used 3 + 1, and 9 used mixed schedules. With such a sizeable and generally representative dataset, PSERENADE will be able to conduct robust analyses to estimate PCV impact and inform policy at national and global levels regarding adult immunization, schedule, and product choice, including for higher valency PCVs on the horizon.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/microorganisms9040742DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8066045PMC
April 2021

Changes in Invasive Pneumococcal Disease Caused by Serotype 1 Following Introduction of PCV10 and PCV13: Findings from the PSERENADE Project.

Microorganisms 2021 03 27;9(4). Epub 2021 Mar 27.

National Centre for Immunisation Research and Surveillance and Discipline of Child and Adolescent Health, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia.

serotype 1 (ST1) was an important cause of invasive pneumococcal disease (IPD) globally before the introduction of pneumococcal conjugate vaccines (PCVs) containing ST1 antigen. The Pneumococcal Serotype Replacement and Distribution Estimation (PSERENADE) project gathered ST1 IPD surveillance data from sites globally and aimed to estimate PCV10/13 impact on ST1 IPD incidence. We estimated ST1 IPD incidence rate ratios (IRRs) comparing the pre-PCV10/13 period to each post-PCV10/13 year by site using a Bayesian multi-level, mixed-effects Poisson regression and all-site IRRs using a linear mixed-effects regression (N = 45 sites). Following PCV10/13 introduction, the incidence rate (IR) of ST1 IPD declined among all ages. After six years of PCV10/13 use, the all-site IRR was 0.05 (95% credibility interval 0.04-0.06) for all ages, 0.05 (0.04-0.05) for <5 years of age, 0.08 (0.06-0.09) for 5-17 years, 0.06 (0.05-0.08) for 18-49 years, 0.06 (0.05-0.07) for 50-64 years, and 0.05 (0.04-0.06) for ≥65 years. PCV10/13 use in infant immunization programs was followed by a 95% reduction in ST1 IPD in all ages after approximately 6 years. Limited data availability from the highest ST1 disease burden countries using a 3+0 schedule constrains generalizability and data from these settings are needed.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/microorganisms9040696DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8066231PMC
March 2021

Impact of pneumococcal conjugate vaccine on invasive pneumococcal disease in children under 5 years of age in the Czech Republic.

PLoS One 2021 26;16(2):e0247862. Epub 2021 Feb 26.

Unit for Biostatistics, National Institute of Public Health, Prague, Czech Republic.

Introduction: The aim of this study is to analyse the impact of vaccination of infants with pneumococcal conjugate vaccine (PCV) on the incidence of invasive pneumococcal disease (IPD) in children under 5 years of age in the Czech Republic.

Material And Methods: The present study includes all IPD cases reported in children aged 0-4 years within the surveillance program in 2007-2017. The impact of PCV is analysed for five categories of IPD: cases caused by all serotypes, cases caused by PCV7 serotypes (4, 6B, 9V, 14, 18C, 19F, and 23F), cases caused by three additional PCV10 serotypes (1, 5, and 7F), cases caused by three additional PCV13 serotypes (3, 6A, and 19A), and cases caused by non-PCV serotypes. To assess the impact of PCV, the study period was divided into the pre-vaccination period 2007-2008 and post-vaccination period 2009-2017, which was divided into three three-year parts: 2009-2011, 2012-2014, and 2015-2017. Analysis of differences between periods was based on the Poisson regression model where the population numbers were handled as an offset.

Results: The annual incidence of IPD in children under 5 years of age caused by all serotypes has had a downward trend since 2007: it dropped from 8.52/100 000 in 2007 to 2.67/100 000 in 2017, with slight increases in 2010 and 2013. All three post-vaccination periods show significantly lower (p<0.001) incidences in comparison to the pre-vaccination period, but they do not statistically significantly differ from each other.

Conclusions: IPD surveillance data in the Czech Republic show that after the introduction of PCV vaccination of infants, there has been a significant decrease in the IPD incidence of children under 5 years of age. Continued IPD surveillance is essential to monitor for possible post-vaccination serotype replacement.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0247862PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7909631PMC
February 2021

Whole genome sequencing of macrolide resistant Streptococcus pneumoniae serotype 19A sequence type 416.

BMC Microbiol 2020 07 25;20(1):224. Epub 2020 Jul 25.

Centre for Epidemiology and Microbiology, National Institute of Public Health, Prague, Czech Republic.

Background: The resistance of Streptococcus pneumoniae to macrolides is becoming an increasingly important issue and thus it is important to understand the genetics related to adaptation of this species to the widespread use of antibiotics in Europe. The 58 isolates of S. pneumoniae belonging to sequence type (ST) 416 and serotype 19A and to several different phenotypes originated from Italy, Portugal and Czech Republic were thus sequenced on Illumina MiSeq. The aim of the study was to describe genetical origine of isolates, investigate their macrolide resistance and suggest reasons for spread of ST416 in the Czech Republic.

Results: Investigation of genes associated with serotype determined serotype switch between 15B and 19A serotypes and core genome multilocus sequence typing (cgMLST) confirmed the origine of concerned isolates in Netherlands-37 clone. Inspected genomes proved variability of genes associated with the macrolide resistance even within closely genetically relative isolates.

Conclusions: Participation of 19A/ST416 on the spread of Netherlands-37 is accompanied by serotype switch between 19A and 15B serotypes and with acquisition of genes involved in macrolide resistance to the clone that was originally macrolide susceptible. There is evident tendency to interchanging and modifications of these and surrounding genes, that could lead to accelerate spreading of this sequence type in regions with high macrolide consumption.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12866-020-01909-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7382794PMC
July 2020

Dry powder inhaler of colistimethate sodium for lung infections in cystic fibrosis: optimization of powder construction.

Drug Dev Ind Pharm 2019 Oct 30;45(10):1664-1673. Epub 2019 Aug 30.

Department of Life Sciences and Biotechnology , Ferrara , Italy.

Colistimethate sodium (CMS) for treatment of lung infections in cystic fibrosis patient was transformed into a dry powder for inhalation by spray drying. Design of Experiment was applied for understanding the role of the spray-drying process parameters on the critical quality attributes of the CMS spray-dried (SD) powders and agglomerates thereof. Eleven experimental SD microparticle powders were constructed under different process conditions according to a central composite design. The SD microparticles were then agglomerated in soft pellets. Eleven physico-chemical characteristics of SD CMS microparticle powders or agglomerates thereof were selected as critical quality attributes. The yield of SD process was higher than 75%. The emitted fraction of agglomerates from RS01 inhaler was 75-84%, and the fine particle fraction (particles <5 µm) was between 58% and 62%. The quality attributes of CMS SD powders and respective agglomerates that were significantly influenced by spray-drying process parameters were residual solvent and drug content of the SD microparticles as well as bulk density and respirable dose of the agglomerates. These attributes were also affected by the combination of the process variables. The air aspiration rate was found as the most positively influential on drug and solvent content and respirable dose. The residual solvent content significantly influenced the powder bulk properties and aerodynamic behavior of the agglomerates, i.e. quality attributes that govern drug metering in the device and the particles lungs deposition. Agglomerates of CMS SD microparticles, in combination with RS01 DPI, showed satisfactory results in terms of dose emitted and fine particle fraction.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/03639045.2019.1652636DOI Listing
October 2019

The influence of local emissions and regional air pollution transport on a European air pollution hot spot.

Environ Sci Pollut Res Int 2019 Jan 17;26(2):1675-1692. Epub 2018 Nov 17.

Department of Aerosols Chemistry and Physics, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, v.v.i, Rozvojová 1/135, 165 02, Prague 6 - Suchdol, Czech Republic.

The EU air quality standards have been frequently exceeded in one of the European air pollution hot spots: Ostrava. The aim of this study was to perform an air quality comparison between an urban site (Radvanice), which has a nearby metallurgical complex, and a suburban site (Plesná) to estimate air pollution sources and determine their local and/or regional origins. Twenty-four hour PM and PM (particular matter) concentrations, detailed mass size distributions (MSDs) to distinguish the sources of the fine and coarse PM, and their chemical compositions were investigated in parallel at both sites during the winter of 2014. Positive matrix factorization (PMF) was applied to the PM and PM chemical compositions to investigate their sources. During the measurement campaign, prevailing northeastern-southwestern (NE-SW) wind directions (WDs) were recorded. Higher average PM concentration was measured in Radvanice than in Plesná, whereas PM concentrations were similar at both sites. A source apportionment analysis revealed six and five sources for PM and PM, respectively. In Radvanice, the amount of PM and the most chemical species were similar under SW and NE WD conditions. The dominant sources were industrial (43% for PM and 27% for PM), which were caused by a large metallurgical complex located to the SW, and biomass burning (25% for PM and 36% for PM). In Plesná, the concentrations of PM and all species significantly increased under NE WD conditions. Secondary inorganic aerosols were dominant, with the highest contributions deriving from the NE WD. Therefore, regional pollution transport from the industrial sector in Silesian Province (Poland) was evident. Biomass burning contributed 22% and 24% to PM and PM, respectively. The air quality in Ostrava was influenced by local sources and regional pollution transport. The issue of poor air quality in this region is complex. Therefore, international cooperation from both states (the Czech Republic and Poland) is needed to achieve a reduction in air pollution levels.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-018-3670-yDOI Listing
January 2019

Effect of childhood pneumococcal conjugate vaccination on invasive disease in older adults of 10 European countries: implications for adult vaccination.

Thorax 2019 05 24;74(5):473-482. Epub 2018 Oct 24.

EpiConcept, Paris, France.

Background: Pneumococcal conjugate vaccines (PCVs) have the potential to prevent pneumococcal disease through direct and indirect protection. This multicentre European study estimated the indirect effects of 5-year childhood PCV10 and/or PCV13 programmes on invasive pneumococcal disease (IPD) in older adults across 13 sites in 10 European countries, to support decision-making on pneumococcal vaccination policies.

Methods: For each site we calculated IPD incidence rate ratios (IRR) in people aged ≥65 years by serotype for each PCV10/13 year (2011-2015) compared with 2009 (pre-PCV10/13). We calculated pooled IRR and 95% CI using random-effects meta-analysis and PCV10/13 effect as (1 - IRR)*100.

Results: After five PCV10/13 years, the incidence of IPD caused by all types, PCV7 and additional PCV13 serotypes declined 9% (95% CI -4% to 19%), 77% (95% CI 67% to 84%) and 38% (95% CI 19% to 53%), respectively, while the incidence of non-PCV13 serotypes increased 63% (95% CI 39% to 91%). The incidence of serotypes included in PCV13 and not in PCV10 decreased 37% (95% CI 22% to 50%) in six PCV13 sites and increased by 50% (95% CI -8% to 146%) in the four sites using PCV10 (alone or with PCV13). In 2015, PCV13 serotypes represented 20-29% and 32-53% of IPD cases in PCV13 and PCV10 sites, respectively.

Conclusion: Overall IPD incidence in older adults decreased moderately after five childhood PCV10/13 years in 13 European sites. Large declines in PCV10/13 serotype IPD, due to the indirect effect of childhood vaccination, were countered by increases in non-PCV13 IPD, but these declines varied according to the childhood vaccine used. Decision-making on pneumococcal vaccination for older adults must consider the indirect effects of childhood PCV programmes. Sustained monitoring of IPD epidemiology is imperative.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/thoraxjnl-2018-211767DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6484683PMC
May 2019

Whole genome sequencing of Neisseria meningitidis W isolates from the Czech Republic recovered in 1984-2017.

PLoS One 2018 13;13(9):e0199652. Epub 2018 Sep 13.

National Reference Laboratory for Meningococcal Infections, Centre for Epidemiology and Microbiology, National Institute of Public Health, Prague, Czech Republic.

Introduction: The study presents the analysis of whole genome sequence (WGS) data for Neisseria meningitidis serogroup W isolates recovered in the Czech Republic in 1984-2017 and their comparison with WGS data from other countries.

Material And Methods: Thirty-one Czech N. meningitidis W isolates, 22 from invasive meningococcal disease (IMD) and nine from healthy carriers were analysed. The 33-year study period was divided into three periods: 1984-1999, 2000-2009, and 2010-2017.

Results: Most study isolates from IMD and healthy carriers were assigned to clonal complex cc22 (n = 10) in all study periods. The second leading clonal complex was cc865 (n = 8) presented by IMD (n = 7) and carriage (n = 1) isolates that emerged in the last study period, 2010-2017. The third clonal complex was cc11 (n = 4) including IMD isolates from the first (1984-1999) and third (2010-2017) study periods. The following clonal complex was cc174 (n = 3) presented by IMD isolates from the first two study periods, i.e. 1984-1999 and 2000-2009. One isolate of each cc41/44 and cc1136 originated from healthy carriers from the second study period, 2000-2009. The comparison of WGS data for N. meningitidis W isolates recovered in the Czech Republic in the study period 1984-2017 and for isolates from other countries recovered in the same period showed that clonal complex cc865, ST-3342 is unique to the Czech Republic since 2010. Moreover, the comparison shows that cc11 in the Czech Republic does not comprise novel hypervirulent lineages reported from both European and non-European countries. All 31 study isolates were assigned to Bexsero® Antigen Sequence Types (BAST), and seven of them were of newly described BASTs.

Conclusions: WGS analysis contributed considerably to a more detailed molecular characterization of N. meningitidis W isolates recovered in the Czech Republic over a 33-year period and allowed for a spatial and temporal comparison of these characteristics between isolates from the Czech Republic and other countries. The most interesting finding of this study is that eight of 31 Czech isolates of N. meningitidis W belong to clonal complex cc865, which is uncommon for serogroup W. In addition, the WGS data precised the base for the update of the recommendation for vaccination in the Czech Republic.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0199652PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6136696PMC
February 2019

Molecular characterization of serogroup 19 in the Czech Republic in the post-vaccine era.

J Med Microbiol 2018 Jul;67(7):1003-1011

Veterinary Research Institute, Brno, Czech Republic.

The aim of this study was to characterize serogroup 19 isolates resistant to macrolides and/or penicillin found among pneumococci recovered from cases of invasive and respiratory tract disease in the Czech Republic in 2014. Pneumococcal isolates of serotypes 19A (=26) and 19F (=10) that were non-susceptible to penicillin and/or macrolides and had been collected in 2014 were analysed using multi-locus sequence typing (MLST). Four isolates representing the major clones were subjected to whole-genome sequencing (WGS). The penicillin-susceptible macrolide-resistant isolates of serotype 19A were mainly associated with sequence type (ST) 416 belonging to clonal complex (CC) 199, and the penicillin-resistant isolates were of serotype 19F belonging to ST1464 (CC 320). WGS revealed the presence of pilus 1, in association with pilus 2, in serotype19F isolates belonging to CC 320. Another adhesin, pneumococcal serine-rich protein (PsrP), was only present in serotype 19A isolates of ST416. Analysis of the penicillin-binding proteins (PBPs) of serotype 19F penicillin-resistant isolates (ST1464 and ST271) performed on PBP1a, 2b and 2x identified a large number of mutations in comparison to the reference strain, R6. Both isolates contained a unique PBP profile; however, they were highly similar to PBP sequences of the Taiwan-14 reference strain. The sequences of both 19F isolates showed the lowest similarity to those of the Taiwan-14 strain (91 % similarity), while they were also found to be distantly related to each other (94 % similarity). WGS revealed specific virulence factors in antibiotic-resistant pneumococcal clones that spread rapidly in the post-vaccine era in the Czech Republic.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1099/jmm.0.000765DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6152367PMC
July 2018

Effect of high-valency pneumococcal conjugate vaccines on invasive pneumococcal disease in children in SpIDnet countries: an observational multicentre study.

Lancet Respir Med 2017 08 27;5(8):648-656. Epub 2017 Mar 27.

Epidemiology Department, EpiConcept, Paris, France.

Background: The Streptococcus pneumoniae Invasive Disease network (SpIDnet) actively monitors populations in nine sites in seven European countries for invasive pneumococcal disease. Five sites use 13-valent pneumococcal conjugate vaccine (PCV13) alone and four use the ten-valent PCV (PCV10) and PCV13. Vaccination uptake is greater than 90% in six sites and 67-78% in three sites. We measured the effects of introducing high-valency PCVs on the incidence of invasive pneumococcal disease in children younger than 5 years.

Methods: We compared the incidence of invasive pneumococcal disease in each of the 4 years after the introduction of PCV13 alone or PCV10 and PCV13 with the average incidence during the preceding period of heptavalent PCV (PCV7) use, overall and by serotype category. We calculated incidence rate ratios (IRRs) and 95% CIs for each year and pooled the values for all sites in a random effects meta-analysis.

Findings: 4 years after the introduction of PCV13 alone or PCV10 and PCV13, the pooled IRR was 0·53 (95% CI 0·43-0·65) for invasive pneumococcal disease in children younger than 5 years caused by any serotype, 0·16 (0·07-0·40) for disease caused by PCV7 serotypes, 0·17 (0·07-0·42) for disease caused by 1, 5, and 7F serotypes, and 0·41 (0·25-0·69) for that caused by 3, 6A and 19A serotypes. We saw a similar pattern when we restricted the analysis to sites where only PCV13 was used. The pooled IRR for invasive pneumococcal disease caused by non-PCV13 serotypes was 1·62 (1·09-2·42).

Interpretation: The incidence of invasive pneumococcal disease caused by all serotypes decreased due to a decline in the incidence of vaccine serotypes. By contrast, that of invasive pneumococcal disease caused by non-PCV13 serotypes increased, which suggests serotype replacement. Long-term surveillance will be crucial to monitor the further effects of PCV10 and PCV13 vaccination programmes in young children.

Funding: European Centre for Disease Prevention and Control, Czech National Institute of Public Health, French National Agency for Public Health, Irish Health Services Executive, Norwegian Institute of Public Health, Public Health Agency of Catalonia, Public Health Department of Community of Madrid, Navarra Hospital Complex, Public Health Institute of Navarra, CIBER Epidemiology and Public Health, Institute of Health Carlos III, Public Health Agency of Sweden, and NHS Scotland.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/S2213-2600(17)30110-8DOI Listing
August 2017

Serogroup and Clonal Characterization of Czech Invasive Neisseria meningitidis Strains Isolated from 1971 to 2015.

PLoS One 2016 9;11(12):e0167762. Epub 2016 Dec 9.

National Reference Laboratory for Meningococcal Infections, National Institute of Public Health, Prague, Czech Republic.

Background: This study presents antigenic and genetic characteristics of Neisseria meningitidis strains recovered from invasive meningococcal disease (IMD) in the Czech Republic in 1971-2015.

Material And Methods: A total of 1970 isolates from IMD, referred to the National Reference Laboratory for Meningococcal Infections in 1971-2015, were studied. All isolates were identified and characterized by conventional biochemical and serological tests. Most isolates (82.5%) were characterized by multilocus sequence typing method.

Results: In the study period 1971-2015, the leading serogroup was B (52.4%), most often assigned to clonal complexes cc32, cc41/44, cc18, and cc269. A significant percentage of strains were of serogroup C (41.4%), with high clonal homogeneity due to hyperinvasive complex cc11, which played an important role in IMD in the Czech Republic in the mid-1990s. Serogroup Y isolates, mostly assigned to cc23, and isolates of clonally homogeneous serogroup W have also been recovered more often over the last years.

Conclusion: The incidence of IMD and distribution of serogroups and clonal complexes of N. meningitidis in the Czech Republic varied over time, as can be seen from the long-term monitoring, including molecular surveillance data. Data from the conventional and molecular IMD surveillance are helpful in refining the antimeningococcal vaccination strategy in the Czech Republic.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0167762PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5147975PMC
July 2017

The Czech Surveillance System for Invasive Pneumococcal Disease, 2008-2013: A Follow-Up Assessment and Sensitivity Estimation.

PLoS One 2015 30;10(6):e0131117. Epub 2015 Jun 30.

National Institute of Public Health (NIPH), Prague, Czech Republic.

Background: Invasive pneumococcal disease (IPD) is caused by Streptococcus pneumoniae and mostly presents as pneumonia, sepsis or meningitis. A notable portion of IPD cases is vaccine preventable and the pneumococcal conjugate vaccine (PCV) was introduced into the routine childhood immunization programs in many countries during the last decades.

Objectives: Before PCV introduction in the Czech Republic in 2010, a national surveillance system for IPD was implemented in 2008 and further improved in 2011. In this study, we describe the new surveillance system for the first time and measure its sensitivity between 2010 and 2013 using the capture-recapture method. Furthermore, we describe the recent epidemiological trend of IPD, taking sensitivity estimates into account.

Results And Conclusions: Between 2010 and 2013 the estimated sensitivity of the overall IPD surveillance increased from 81% to 99%. The sensitivity of individual reporting sources increased from 72% to 87% for the laboratory system and from 31% to 89% for the epidemiological notification system. Crucial for this improvement was the introduction of quarterly report reminders in 2011. Due to positive source dependency, the presented sensitivity estimates are most probably overestimated and reflect the upper limit of reporting completeness. Stratification showed variation in sensitivity of reporting particularly according to region. An effect of the PVC vaccination in the Czech Republic is visible in the incidence of IPD in target age groups (<5 y). This influence was not evident in the total IPD incidence and may interfere with increasing sensitivity of reporting. In 2013, an increase in the IPD incidence was observed. This finding requires further observation and a detailed vaccine impact analysis is needed to assess the current immunization strategy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0131117PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4488342PMC
April 2016

[Invasive meningococcal disease in the Czech Republic - analysis of the epidemiological situation and vaccination strategy recommendations].

Epidemiol Mikrobiol Imunol 2013 Dec;62(4):138-47

Aims: Analysis of invasive meningococcal disease (IMD) surveillance data including molecular epidemio-logy data. Vaccination strategy recommendations based on the current epidemiological situation of IMD in the Czech Republic and availability of meningococcal vaccines.

Material And Methods: IMD surveillance data are compiled by the National Reference Laboratory for Meningococcal Disease (NRL) from routinely reported data and NRL data after clearing out duplicate data. Neisseria meningitidis (N.m.) isolates referred to the NRL are confirmed and characterized in detail according to internationally validated methods.

Results: The current epidemiological situation of IMD is relatively favourable - the incidence rates have been below 1/100,000 population for several years, but show a slightly upward trend over more than 40-year period (1970-2012). A return to the typical prevalence of serogroup B accounting for up to 75% of cases has recently been shown. In this context, the upward trend in IMD caused by serogroup Y associated with a high case fatality rate in the Czech Republic cannot be overseen or even underestimated. The hypervirulent clonal complex cc11 characteristic of N.m.C:2a:P1.2,5 prevailed in this country between 1993 and 2004, but decreased in the following years and currently, hypervirulent clonal complexes characteristic of N.m.B (cc18, cc32, cc41/44, and cc269) are the most common in the Czech Republic. The average overall case fatality rate in the Czech Republic is 10%, but varies between causative serogroups: the highest case fatality rate has been caused by serogroup Y (16.7% ), followed by serogroup C (12.3%), and serogroup W135 (11.7%), while serogroup B only accounts for a case fatality rate of 7.8%. In the age group under one year, the incidence of IMD caused by serogroup B remains three to five times as high as in the age groups 1-4 years and 15-19 years throughout the surveillance period. The highest numbers of IMD cases caused by serogroup B have been reported in 3-7-month-olds.

Conclusion: Based on the IMD surveillance data from the Czech Republic, the NRL recommends a vaccination strategy to provide an adequate protection to individuals. To induce an immune response as wide as possible, the tetravalent meningococcal conjugate vaccine A,C,Y,W135 in combination with the newly registered MenB vaccine designed by reverse vaccinology should be given. To maintain immunity, subsequent booster doses are required at intervals depending on the primary vaccination age.
View Article and Find Full Text PDF

Download full-text PDF

Source
December 2013

[A novel typing method and scheme for Streptococcus pneumoniae].

Epidemiol Mikrobiol Imunol 2013 Jul;62(2):50-4, 56-8

Statni zdravotni ustav, Praha.

Study Aim: To introduce a novel molecular PCR method for the typing of Streptococcus pneumonia in the National Reference Laboratory (NRL) for Streptococcal Infections.

Material And Methods: Strains of Streptococcus pneumoniae are referred to the NRL from different regions of the Czech Republic. Generally, the identification and typing are based on strain morphology, optochin susceptibility, bile solubility, latex agglutination, and the Quellung reaction. Since 2012, a novel multiplex polymerase chain reaction (mPCR) assay has been introduced. The novel assay was tested on 210 S. pneumoniae isolates and 8 isolates of the related species S. pseudopneumoniae, S. sanguinis, and S. oralis.

Results: The NRL for Streptococcal Infections has included a novel mPCR assay in the algorithm of S. pneumoniae identification and typing. The mPCR assay was able to identify and type any pneumococcal strain from the study collection, with the isolates of the related species remaining negative. The mPCR assay showed 100% sensitivity and specificity in this study. The pCR appeared to be an excellent tool for S. pneumoniae typing.

Conclusion: Until recently, S. pneumoniae serotypes and serogroups were differentiated using a serological approach (Quellung reaction), but the NRL for Streptococcal Infections has switched to a novel mPCR assay. This molecular tool improves S. pneumoniae typing, making it more accurate.
View Article and Find Full Text PDF

Download full-text PDF

Source
July 2013

Infection by Neisseria meningitidis serogroup W135 belonging to the unusual clone ST-3342 in the Czech Republic.

Folia Microbiol (Praha) 2013 Jan 23;58(1):85-6. Epub 2012 Jun 23.

Department of Microbiology, Faculty of Medicine and University Hospital, Charles University, Plzen, Czech Republic.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12223-012-0177-7DOI Listing
January 2013