Publications by authors named "Jan J Lang"

3 Publications

  • Page 1 of 1

Suspension button constructs restore posterior knee laxity in solid tibial avulsion of the posterior cruciate ligament.

Knee Surg Sports Traumatol Arthrosc 2021 Mar 6. Epub 2021 Mar 6.

Department of Sports Orthopaedic Medicine, Klinikum Rechts Der Isar, TU Munich, Ismaninger Str. 22, 81675, München, Germany.

Purpose: Dislocated tibial avulsions of the posterior cruciate ligament (PCL) require surgical intervention. Several arthroscopic strategies are options to fix the fragment and restore posterior laxity, including two types of suspension button devices: adjustable (self-locking) and rigid knotted systems. Our hypothesis was that a rigid knotted button construct has superior biomechanical properties regarding laxity restoration compared with an adjustable system. Both techniques were compared with standard screw fixation and the native PCL.

Methods: Sixty porcine knees were dissected. The constructs were tested for elongation, stiffness, yield force, load to failure force, and failure mode in a material testing machine. Group N (native, intact PCL) was used as a control group. In group DB (Dogbone™), TR (Tightrope™), and S (screw), a standardized block osteotomy with the osteotomized fragment attached to the PCL was set. The DB and TR groups simulated using a suspension button system with either a rigid knotted (DB) or adjustable system (TR). These groups were compared to a screw technique (S) simulating antegrade screw fixation from posterior.

Results: Comparing the different techniques (DB, TR, S), no significant elongation was detected; all techniques achieved a sufficient posterior laxity restoration. Significant elongation in the DB and TR group was detected compared with the native PCL (N). In contrast, screw fixation did not lead to significant elongation. The stiffness, yield load, and load to failure force did not differ significantly between the techniques. None of the techniques reached the same level of yield load and load to failure force as the intact state.

Conclusion: Arthroscopic suspension button techniques sufficiently restore the posterior laxity and gain a comparable construct strength as an open antegrade screw fixation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00167-021-06510-1DOI Listing
March 2021

Varus alignment increases medial meniscus extrusion and peak contact pressure: a biomechanical study.

Knee Surg Sports Traumatol Arthrosc 2020 Apr 5;28(4):1092-1098. Epub 2019 Sep 5.

Department of Orthopaedic Sports Medicine, Hospital Rechts Der Isar, Technical University of Munich, Ismaningerstr. 22, 81675, Munich, Germany.

Purpose: Assessment of medial meniscus extrusion (MME) has become increasingly popular in clinical practice to evaluate the dynamic meniscus function and diagnose meniscus pathologies. The purpose of this biomechanical study was to investigate the correlation between MME and the changes in joint contact pressure in varus and valgus alignment. It was hypothesized that varus alignment would result in significantly higher MME along with a higher joint contact pressure in the medial compartment.

Methods: Eight fresh-frozen human cadaveric knees were axially loaded, with a 750 N compressive load, in full extension with the mechanical axis shifted to intersect the tibial plateau at 30% and 40% (varus), 50% (neutral), 60% and 70% (valgus) of its width (TPW). Tibiofemoral peak contact pressure (PCP), mean contact pressure (MCP) and contact area (CA) were determined using pressure-sensitive films. MME was obtained via ultrasound at maximum load.

Results: MME was significantly increased from valgus (1.32 ± 0.22 mm) to varus alignment (3.16 ± 0.24 mm; p < 0.001). Peak contact pressure at 30% TPW varus alignment was significantly higher compared to 60% TPW valgus (p = 0.018) and 70% TPW valgus (p < 0.01). MME significantly correlated with PCP (r = 0.56; p < 0.001) and MCP (r = 0.47, p < 0.01) but not with CA (r = 0.23; n.s.).

Conclusion: MME was significantly increased in varus alignment, compared to neutral or valgus alignment, with an intact medial meniscus. It was also significantly correlated with PCP and MCP within the medial compartment. However, valgus malalignment and neutral axis resulted in reduced MME and contact pressure. Lower limb alignment must be taken into account while assessing MME in clinical practice.

Level Of Evidence: Controlled laboratory study.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00167-019-05701-1DOI Listing
April 2020

Varus alignment aggravates tibiofemoral contact pressure rise after sequential medial meniscus resection.

Knee Surg Sports Traumatol Arthrosc 2020 Apr 3;28(4):1055-1063. Epub 2019 Aug 3.

Department of Orthopedics and Sports Orthopedics, Technical University of Munich, Hospital Rechts der Isar, Munich, Germany.

Purpose: Arthroscopic partial meniscectomy of medial meniscus tears and varus alignment are considered independent risk factors for increased medial compartment load, thus contributing to the development of medial osteoarthritis. The purpose of this biomechanical study was to investigate the effect of lower limb alignment on contact pressure and contact area in the knee joint following sequential medial meniscus resection. It was hypothesized that a meniscal resection of 50% would lead to a significant overload of the medial compartment in varus alignment.

Methods: Eight fresh-frozen human cadaveric knees were axially loaded with a 750 N compressive force in full extension with the mechanical axis rotated to intersect the tibia plateau at 30%, 40%, 50%, 60% and 70% of its width. Tibiofemoral mean contact pressure (MCP), peak contact pressure (PCP), and contact area (CA) of the medial and lateral compartment were measured separately using pressure-sensitive films (K-Scan 4000, Tekscan) in four different meniscal conditions, respectively, intact, 50% resection, 75% resection, and total meniscectomy.

Results: Medial MCP was significantly increased when comparing the intact meniscus to each meniscal resection in all tested alignments (p < 0.05). Following meniscal resection of 50%, MCP was significantly higher with greater varus alignment compared to valgus alignment (p < 0.05). Similarly, medial PCP was higher at varus alignment compared to valgus alignment (p < 0.05). Further resection to 75% and 100% of the meniscus resulted in a significantly higher medial PCP at 30% of tibia plateau width compared to all other alignments (p < 0.05). Medial CA of the intact meniscus decreased significantly after 50%, 75% and 100% meniscal resection in all alignments (p < 0.05). Lateral joint pressure was not significantly increased by greater valgus alignment.

Conclusion: Lower limb alignment and the extent of medial meniscal resection significantly affect tibiofemoral contact pressure. Combined varus alignment and medial meniscal resection increased MCP and PCP within the medial compartment, whereas valgus alignment prevented medial overload. As a clinical consequence, lower limb alignment should be considered in the treatment of patients undergoing arthroscopic partial meniscectomy with concomitant varus alignment. In patients presenting with ongoing medial joint tenderness and effusion, realignment osteotomy can be a surgical technique to unload the medial compartment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00167-019-05654-5DOI Listing
April 2020