Publications by authors named "Jan Bendl"

3 Publications

  • Page 1 of 1

Spatial-temporal variability of aerosol sources based on chemical composition and particle number size distributions in an urban settlement influenced by metallurgical industry.

Environ Sci Pollut Res Int 2020 Nov 5;27(31):38631-38643. Epub 2020 Jul 5.

Department of Public Health Sciences, University of Rochester Medical Center, 265 Crittenden Boulevard, Rochester, NY, 14642-0708, USA.

The Moravian-Silesian region of the Czech Republic with its capital city Ostrava is a European air pollution hot spot for airborne particulate matter (PM). Therefore, the spatiotemporal variability assessment of source contributions to aerosol particles is essential for the successful abatement strategies implementation. Positive Matrix Factorization (PMF) was applied to highly-time resolved PM chemical composition (1 h resolution) and particle number size distribution (PNSD, 14 nm - 10 μm) data measured at the suburban (Ostrava-Plesná) and urban (Ostrava-Radvanice) residential receptor sites in parallel during an intensive winter campaign. Diel patterns, meteorological variables, inorganic and organic markers, and associations between the chemical composition factors and PNSD factors were used to identify the pollution sources and their origins (local, urban agglomeration and regional). The source apportionment analysis resolved six and four PM sources in Plesná and Radvanice, respectively. In Plesná, local residential combustion sources (coal and biomass combustion) followed by regional combustion sources (residential heating, metallurgical industry) were the main contributors to PM. In Radvanice, local residential combustion and the metallurgical industry were the most important PM sources. Aitken and accumulation mode particles emitted by local residential combustion sources along with common urban sources (residential heating, industry and traffic) were the main contributors to the particle number concentration (PNC) in Plesná. Additionally, accumulation mode particles from local residential combustion sources and regional pollution dominated the particle volume concentration (PVC). In Radvanice, local industrial sources were the major contributors to PNC and local coal combustion was the main contributor to PVC. The source apportionment results from the complementary datasets elucidated the relevance of highly time-resolved parallel measurements at both receptor sites given the specific meteorological conditions produced by the regional orography. These results are in agreement with our previous studies conducted at this site. Graphical abstract.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-020-09694-0DOI Listing
November 2020

Integration of air pollution data collected by mobile measurement to derive a preliminary spatiotemporal air pollution profile from two neighboring German-Czech border villages.

Sci Total Environ 2020 Jun 11;722:137632. Epub 2020 Mar 11.

Joint Mass Spectrometry Center, Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Joint Mass Spectrometry Center, Chair of Analytical Chemistry, University of Rostock, Rostock, Germany.

Generally, there are only a few fixed air quality monitoring stations installed in villages or rural areas and only a few studies on small-scale variations in air pollution have been described in detail, which make it difficult to estimate human exposure in such environments and related adverse health effects. Moreover, biomass combustion can be an important source of air pollution in rural areas, comparable to vehicle and industrial emissions in urban planning. And their air pollutants are mainly affected by local sources. For this reason, a survey on rural air pollution was carried out in this study. Therefore, portable, battery-powered monitoring devices were used to measure particulate matter (PM, PM, PM, particle number concentration, and black carbon) in order to study air quality in rural communities. The focus of the investigations was to explore the application of mobile monitoring equipment in small-scale environments, compare the differences in rural air pollutants between two neighboring villages in two countries, and the identification of pollution hotspots. The measurements were carried out in November 2018 in two villages on the German-Czech border. Over a period of four days, 21 mobile measurements along fixed routes were carried out simultaneously at both locations. The analysis of the data revealed significant differences in PN and PM concentrations in rural air pollutants between the two countries. The spatial and temporal distribution of air pollution hotspots in the Czech village was higher than that in the German village. The relationships between the measurement parameters were weak but highly significant and the meteorological parameters can effect air pollution. Overall, the results of this study show that mobile measurements are suitable for effectively recording and distinguishing spatial and temporal characteristics of air quality.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.137632DOI Listing
June 2020

Day-to-day variability of toxic events induced by organic compounds bound to size segregated atmospheric aerosol.

Environ Pollut 2015 Jul 26;202:135-45. Epub 2015 Mar 26.

Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 70, 62100 Brno, Czech Republic. Electronic address:

This study quantified the temporal variability of concentration of carcinogenic polycyclic aromatic hydrocarbons (c-PAHs), genotoxicity, oxidative DNA damage and dioxin-like activity of the extractable organic matter (EOM) of atmospheric aerosol particles of aerodynamic diameter (dae, μm) coarse (1 < dae < 10), upper- (0.5 < dae < 1) and lower-accumulation (0.17 < dae < 0.5) and ultrafine (<0.17) fractions. The upper accumulation fraction formed most of the aerosol mass for 22 of the 26 study days and contained ∼44% of total c-PAHs, while the ultrafine fraction contained only ∼11%. DNA adduct levels suggested a crucial contribution of c-PAHs bound to the upper accumulation fraction. The dioxin-like activity was also driven primarily by c-PAH concentrations. In contrast, oxidative DNA damage was not related to c-PAHs, as a negative correlation with c-PAHs was observed. These results suggest that genotoxicity and dioxin-like activity are the major toxic effects of organic compounds bound to size segregated aerosol, while oxidative DNA damage is not induced by EOM.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2015.03.024DOI Listing
July 2015