Publications by authors named "Jamie Freedman"

10 Publications

  • Page 1 of 1

Tocilizumab in Patients Hospitalized with Covid-19 Pneumonia.

N Engl J Med 2021 01 17;384(1):20-30. Epub 2020 Dec 17.

From Elmhurst Hospital Center-Icahn School of Medicine at Mount Sinai Hospital (C.S.), and Elmhurst Hospital Center-New York City Health and Hospitals (E.K.-L.) - both in New York; Genentech, South San Francisco (J.H., L.Y., W.G.R., B.K., B.A., J.F., S.V.M.), and Highland Hospital, Oakland (R.B.) - both in California; San Juan Oncology Associates, Farmington, NM (J.D.N); Lewis Katz School of Medicine at Temple University, Philadelphia (G.J.C.); Michael E. DeBakey Houston VA Medical Center, Houston (L.P.); Holy Cross Health, Silver Spring, MD (M.L.C.); Ochsner Clinic Foundation, New Orleans (J.G.-D.); Central Military Hospital, Lima, Peru (V.C.); Stellenbosch University, Cape Town, South Africa (M.M.-R); BR Trials-Clinical Research, São Paulo (F.L.M.); Aga Khan University Hospital, Nairobi (R.S.); and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City (M.F.G.-L.).

Background: Coronavirus disease 2019 (Covid-19) pneumonia is often associated with hyperinflammation. Despite the disproportionate incidence of Covid-19 among underserved and racial and ethnic minority populations, the safety and efficacy of the anti-interleukin-6 receptor antibody tocilizumab in patients from these populations who are hospitalized with Covid-19 pneumonia are unclear.

Methods: We randomly assigned (in a 2:1 ratio) patients hospitalized with Covid-19 pneumonia who were not receiving mechanical ventilation to receive standard care plus one or two doses of either tocilizumab (8 mg per kilogram of body weight intravenously) or placebo. Site selection was focused on the inclusion of sites enrolling high-risk and minority populations. The primary outcome was mechanical ventilation or death by day 28.

Results: A total of 389 patients underwent randomization, and the modified intention-to-treat population included 249 patients in the tocilizumab group and 128 patients in the placebo group; 56.0% were Hispanic or Latino, 14.9% were Black, 12.7% were American Indian or Alaska Native, 12.7% were non-Hispanic White, and 3.7% were of other or unknown race or ethnic group. The cumulative percentage of patients who had received mechanical ventilation or who had died by day 28 was 12.0% (95% confidence interval [CI], 8.5 to 16.9) in the tocilizumab group and 19.3% (95% CI, 13.3 to 27.4) in the placebo group (hazard ratio for mechanical ventilation or death, 0.56; 95% CI, 0.33 to 0.97; P = 0.04 by the log-rank test). Clinical failure as assessed in a time-to-event analysis favored tocilizumab over placebo (hazard ratio, 0.55; 95% CI, 0.33 to 0.93). Death from any cause by day 28 occurred in 10.4% of the patients in the tocilizumab group and 8.6% of those in the placebo group (weighted difference, 2.0 percentage points; 95% CI, -5.2 to 7.8). In the safety population, serious adverse events occurred in 38 of 250 patients (15.2%) in the tocilizumab group and 25 of 127 patients (19.7%) in the placebo group.

Conclusions: In hospitalized patients with Covid-19 pneumonia who were not receiving mechanical ventilation, tocilizumab reduced the likelihood of progression to the composite outcome of mechanical ventilation or death, but it did not improve survival. No new safety signals were identified. (Funded by Genentech; EMPACTA ClinicalTrials.gov number, NCT04372186.).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1056/NEJMoa2030340DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7781101PMC
January 2021

Using patient-initiated study participation in the development of evidence for personalized cancer therapy.

Clin Cancer Res 2011 Nov;17(21):6651-7

Lung Cancer Alliance, Washington, District of Columbia, USA.

Personalized cancer therapy offers the promise of delivering the right treatments to the right patients to improve patient outcomes and quality of life, while reducing exposure to ineffective therapies and the cost of cancer care. Realizing this promise depends in large part on our ability to generate timely and sufficiently detailed information regarding factors that influence treatment response. Generating this evidence through the traditional physician investigator-initiated clinical trial system has proved to be challenging, given poor recruitment rates and low compliance with requests for biospecimen collection. As a result, our current understanding of treatment response is inadequate, particularly for cancer therapies that have been in use for many years. Patient-initiated study participation may offer a new model for evidence generation that capitalizes on strong patient interest in furthering research to inform better and more tailored cancer therapies. In this approach, patients are engaged and recruited directly by the sponsor of an Institutional Review Board-approved study, and patients subsequently drive the participation of their health care providers to facilitate collection of required data and tissue samples. The ultimate goal of these studies is to generate evidence of sufficient quality to inform regulatory decisions (i.e., labeling changes for marketed therapies to reflect populations most likely to respond) and treatment selection. Here, we describe a hypothetical prospective observational study in non-small cell lung cancer that could serve as a model for patient-initiated study participation applied to understand molecular determinants of treatment response. Key elements discussed include study design, patient engagement, and data/biospecimen collection and management principles.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/1078-0432.CCR-11-1110DOI Listing
November 2011

Characterization of 2-(2,6-dichloro-benzyl)-thiazolo[5,4-d]pyrimidin-7-yl]-(4-trifluoromethyl-phenyl)-amine (JNJ-39729209) as a novel TRPV1 antagonist.

Eur J Pharmacol 2011 Aug 10;663(1-3):40-50. Epub 2011 May 10.

Johnson & Johnson Pharmaceutical Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA.

As an integrator of multiple nociceptive and/or inflammatory stimuli, TRPV1 is an attractive therapeutic target for the treatment of various painful disorders. Several TRPV1 antagonists have been advanced into clinical trials and the initial observations suggest that TRPV1 antagonism may be associated with mild hyperthermia and thermal insensitivity in man. However, no clinical efficacy studies have been described to date, making an assessment of risk:benefit impossible. Furthermore, it is not clear whether these early observations are representative of all TRPV1 antagonists and whether additional clinical studies with novel TRPV1 antagonists are required in order to understand optimal compound characteristics. In the present study we describe 2-(2,6-dichloro-benzyl)-thiazolo[5,4-d]pyrimidin-7-yl]-(4-trifluoromethyl-phenyl)-amine (JNJ-39729309) as a novel, TRPV1 antagonist. JNJ-39729209 displaced tritiated resiniferotoxin binding to TRPV1 and prevented TRPV1 activation by capsaicin, protons and heat. In-vivo, JNJ-39729209 blocked capsaicin-induced hypotension, induced a mild hyperthermia and inhibited capsaicin-induced hypothermia in a dose dependent manner. JNJ-39729209 showed significant efficacy against carrageenan- and CFA-evoked thermal hyperalgesia and exhibited significant anti-tussive activity in a guinea-pig model of capsaicin-induced cough. In pharmacokinetic studies, JNJ-39729209 was found to have low clearance, a moderate volume of distribution, good oral bioavailability and was brain penetrant. On the basis of these findings, JNJ-39729209 represents a structurally novel TRPV1 antagonist with potential for clinical development. The advancement of JNJ-39729209 into human clinical trials could be useful in further understanding the analgesic potential of TRPV1 antagonists.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2011.05.001DOI Listing
August 2011

JNJ-26070109 [(R)4-bromo-N-[1-(2,4-difluoro-phenyl)-ethyl]-2-(quinoxaline-5-sulfonylamino)-benzamide]: a novel, potent, and selective cholecystokinin 2 receptor antagonist with good oral bioavailability.

J Pharmacol Exp Ther 2011 Jul 14;338(1):328-36. Epub 2011 Apr 14.

Johnson & Johnson Pharmaceutical Research & Development, LLC San Diego, California 92101, USA.

JNJ-26070109 [(R)4-bromo-N-[1-(2,4-difluoro-phenyl)-ethyl]-2-(quinoxaline-5-sulfonylamino)-benzamide] is a representative of a new chemical class of competitive antagonists of cholecystokinin 2 (CCK2) receptors. In this study, the primary in vitro pharmacology of JNJ-26070109 was evaluated along with the pharmacokinetic and pharmacodynamic properties of this compound in rat and canine models of gastric acid secretion. JNJ-26070109 expressed high affinity for human (pK(I) = 8.49 ± 0.13), rat (pK(I) = 7.99 ± 0.08), and dog (pK(I) = 7.70 ± 0.14) CCK2 receptors. The selectivity of JNJ-26070109 at the CCK2 receptor versus the CCK1 receptor was species-dependent, with the greatest degree of selectivity (>1200-fold) measured at the human isoforms of the CCK1 receptor (selectivity at CCK2 versus CCK1 receptors: human, ∼1222-fold; rat, ∼324-fold; dog ∼336-fold). JNJ-26070109 behaved as a surmountable, competitive, antagonist of human CCK2 receptors in a calcium mobilization assay (pK(B) = 8.53 ± 0.05) and in pentagastrin-stimulated gastric acid secretion in the isolated, lumen-perfused, mouse stomach assay (pK(B) = 8.19 ± 0.13). The pharmacokinetic profile of this compound was determined in vivo in rats and dogs. JNJ-26070109 was shown to have high oral bioavailability (%F rat = 73 ± 16; %F dog = 92 ± 12) with half lives of 1.8 ± 0.3 and 1.2 ± 0.1 h in rat and dog, respectively. The pharmacodynamic properties of this compound were investigated using two in vivo models. In conscious rat and dog chronic gastric fistula models of pentagastrin-stimulated acid secretion, JNJ-26070109 had oral EC(50) values of 1.5 and 0.26 μM, respectively. Overall, we have demonstrated that JNJ-26070109 is a high-affinity, selective CCK2 receptor antagonist with good pharmacokinetic properties.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.110.178483DOI Listing
July 2011

Discovery and synthesis of 6,7,8,9-tetrahydro-5H-pyrimido-[4,5-d]azepines as novel TRPV1 antagonists.

Bioorg Med Chem Lett 2010 Dec 17;20(23):7137-41. Epub 2010 Sep 17.

Johnson & Johnson Pharmaceutical Research and Development LLC, San Diego, CA 92121, USA.

Utilization of a tetrahydro-pyrimdoazepine core as a bioisosteric replacement for a piperazine-urea resulted in the discovery a novel series of potent antagonists of TRPV1. The tetrahydro-pyrimdoazepines have been identified as having good in vitro and in vivo potency and acceptable physical properties.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2010.09.023DOI Listing
December 2010

1,2-diamino-ethane-substituted-6,7,8,9-tetrahydro-5H-pyrimido[4,5-d]azepines as TRPV1 antagonists with improved properties.

Bioorg Med Chem Lett 2010 Dec 7;20(23):7142-6. Epub 2010 Sep 7.

Johnson & Johnson Pharmaceutical Research and Development LLC, San Diego, CA 92121, USA.

Based upon a previously reported lead compound 1, a series of 1,2-diamino-ethane-substituted-6,7,8,9-tetrahydro-5H-pyrimido[4,5-d]azepines were synthesized and evaluated for improved physiochemical and pharmacokinetic properties while maintaining TRPV1 antagonist activity. Structure-activity relationship studies directed toward improving the aqueous solubility (pH 2 and fasted-state simulated intestinal fluid (SIF)) and rat pharmacokinetics led to the discovery of compound 13. Aqueous solubility of compound 13 (pH 2 ≥237 μg/mL and SIF=11 μg/mL) was significantly improved over compound 1 (pH 2=5 μg/mL and SIF=0.5 μg/mL). In addition, compound 13 afforded improved rat pharmacokinetics (CL=0.7 L/kg/h) compared to compound 1 (CL=3.1 L/kg/h). Compound 13 was orally bioavailable and afforded a significant reversal of carrageenan-induced thermal hyperalgesia at 5 and 30 mg/kg in rats.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2010.09.006DOI Listing
December 2010

Discovery of potent cholecystokinin-2 receptor antagonists: elucidation of key pharmacophore elements by X-ray crystallographic and NMR conformational analysis.

Bioorg Med Chem 2008 Apr 5;16(7):3917-25. Epub 2008 Feb 5.

Johnson & Johnson Pharmaceutical Research and Development, L.L.C., Drug Discover, 3210 Merryfield Row, San Diego, CA 92121, USA.

A novel series of cholecystokinin-2 receptor (CCK-2R) antagonists has been identified, as exemplified by anthranilic sulfonamide 1 (pK(i)=7.6). Pharmacokinetic and stability studies indicated that this series of compounds suffered from metabolic degradation, and that both the benzothiadiazole and piperidine rings were rapidly oxidized by liver enzymes. A combination of synthesis, computational methods, (1)H NMR conformational studies, and X-ray crystallographic analyses were applied to elucidate key pharmacophore elements, and to discover analogs with improved pharmacokinetic profiles, and high receptor binding affinity and selectivity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2008.01.059DOI Listing
April 2008

3-[5-(3,4-Dichloro-phenyl)-1-(4-methoxy-phenyl)-1H-pyrazol-3-yl]-2-m-tolyl-propionate (JNJ-17156516), a novel, potent, and selective cholecystokinin 1 receptor antagonist: in vitro and in vivo pharmacological comparison with dexloxiglumide.

J Pharmacol Exp Ther 2007 Nov 7;323(2):562-9. Epub 2007 Aug 7.

Johnson & Johnson Pharmaceutical Research & Development L.L.C., San Diego, California 92121, USA.

3-[5-(3,4-Dichloro-phenyl)-1-(4-methoxy-phenyl)-1H-pyrazol-3-yl]-2-m-tolyl-propionate (JNJ-17156516) is a novel, potent, and selective cholecystokinin (CCK)1-receptor antagonist. In this study, the pharmacology of JNJ-17156516 was investigated both in vitro and in vivo, and the pharmacokinetic profile was evaluated in rats. JNJ-17156516 expressed high-affinity at the cloned human (pK(I) = 7.96 +/- 0.11), rat (pK(I) = 8.02 +/- 0.11), and canine (pK(I) = 7.98 +/- 0.04) CCK1 receptors, and it was also highly selective for the CCK1 receptor compared with the CCK2 receptor across the same species ( approximately 160-, approximately 230-, and approximately 75-fold, respectively). The high affinity of JNJ-17156516 at CCK1 receptors in vitro was confirmed in radioligand binding studies on fresh human gallbladder tissue (pK(I) = 8.22 +/- 0.05). In a functional in vitro assay of guinea pig gallbladder contraction, JNJ-17156516 behaved as a competitive antagonist, with a pK(B) value of 8.00 +/- 0.07. In vivo, JNJ-17156516 produced a parallel, rightward shift in the CCK-8S-evoked contraction of the guinea pig gallbladder. The dose required to shift the CCK-8S dose-response curve was 240 nmol kg(-1) i.v. In the anesthetized rat, JNJ-17156516 produced a dose-related decrease in the number of duodenal contractions evoked by infusion of CCK-8S, with an ED(50) = 484 nmol kg(-1). Pharmacokinetic analysis of JNJ-17156516 in rats, revealed that JNJ-17156516 had a half-life of 3.0 +/- 0.5 h and a very high bioavailability (108 +/- 10%) in this species. Overall, we have demonstrated that JNJ-17156516 is a high-affinity selective human CCK1 receptor antagonist with good pharmacokinetic properties in rats.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.107.124578DOI Listing
November 2007

Identification and optimization of anthranilic sulfonamides as novel, selective cholecystokinin-2 receptor antagonists.

J Med Chem 2006 Oct;49(21):6371-90

Johnson and Johnson Pharmaceutical Research and Development, LLC, 3210 Merryfield Row, San Diego, California 92121, USA.

A high throughput screening approach to the identification of selective cholecystokinin-2 receptor (CCK-2R) ligands resulted in the discovery of a novel series of antagonists, represented by 1-[2-[(2,1,3-benzothiadiazol-4-ylsulfonyl)amino]-5-chlorobenzoyl]-piperidine (1; CCK-2R, pK(I) = 6.4). Preliminary exploration of the structure-activity relationships around the anthranilic ring and the amide and sulfonamide moieties led to a nearly 50-fold improvement of receptor affinity and showed a greater than 1000-fold selectivity over the related cholecystokinin-1 receptor. Pharmacokinetic evaluation led to the identification of 4-[4-iodo-2-[(5-quinoxalinylsulfonyl)amino]benzoyl]-morpholine, 26d, a compound that demonstrates promising pharmacokinetic properties in the rat and dog with respect to plasma clearance and oral bioavailability and is a potent inhibitor in vivo of pentagastrin-stimulated acid secretion in the rat when dosed orally.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm060590xDOI Listing
October 2006

A novel, quantitative bio-assay for cholecystokinin type-1 receptor activity in the anaesthetised rat.

J Pharmacol Toxicol Methods 2006 Jul-Aug;54(1):36-41. Epub 2005 Oct 24.

Physiological Systems, Johnson & Johnson Pharmaceutical Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA.

Introduction: Cholecystokinin type-1 (CCK(1)) receptors mediate many of the physiological functions of CCK including delay of gastric emptying, pancreatic enzyme secretion, intestinal motility and gallbladder contractility. Existing in-vivo assays for the quantitative measurement of CCK(1) receptor mediated function are generally variable, limited in precision and require a relatively large number of animals to obtain statistically meaningful data. We found that they did not provide robust pharmacokinetic-pharmacodynamic data for profiling compounds acting at these receptors. Accordingly, here we describe a novel rat duodenal contractility assay that addresses these problems.

Methods: Rats were anaesthetised and a saline-filled balloon was inserted through the body of the stomach and secured in the duodenum approximately 1 cm from the pyloric sphincter for measurement of intra-lumenal pressure. Studies were performed to determine a dose, rate and frequency of administration of CCK8S that produced a readily quantifiable response.

Results: Initial experiments revealed that sustained exposure to CCK8S resulted in the rapid development of tachyphylaxis. After investigating different dosing paradigms, it was found that pulsatile delivery of CCK8S (intravenous infusion for 1 min every 10 min) produced a readily quantifiable contractile response that did not exhibit tachyphylaxis. The assay response output was defined as the number of contractions >5 mm Hg over baseline. The contractions were blocked in a dose-dependent manner by intravenous bolus injections of the CCK(1) receptor antagonists, dexloxiglumide (2 and 20 micromol/kg), and devazepide (3-100 nmol/kg) but not by the CCK(2) receptor antagonist gastrazole (10 micromol/kg).

Conclusion: A novel, simple, high quality assay for the quantification of the in-vivo activity of CCK(1) receptor ligands is described. CCK8S delivered by pulsatile intravenous infusion to anesthetized rats produced a burst of contractile activity of the duodenum mediated by CCK(1) receptors. This activity was highly reproducible and sustained for more than 3 h providing an assay that circumvents problems associated with agonist-induced tachyphylaxis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vascn.2005.09.002DOI Listing
October 2006