Publications by authors named "James P Cook"

30 Publications

  • Page 1 of 1

The genomics of heart failure: design and rationale of the HERMES consortium.

ESC Heart Fail 2021 Sep 3. Epub 2021 Sep 3.

Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.

Aims: The HERMES (HEart failure Molecular Epidemiology for Therapeutic targetS) consortium aims to identify the genomic and molecular basis of heart failure.

Methods And Results: The consortium currently includes 51 studies from 11 countries, including 68 157 heart failure cases and 949 888 controls, with data on heart failure events and prognosis. All studies collected biological samples and performed genome-wide genotyping of common genetic variants. The enrolment of subjects into participating studies ranged from 1948 to the present day, and the median follow-up following heart failure diagnosis ranged from 2 to 116 months. Forty-nine of 51 individual studies enrolled participants of both sexes; in these studies, participants with heart failure were predominantly male (34-90%). The mean age at diagnosis or ascertainment across all studies ranged from 54 to 84 years. Based on the aggregate sample, we estimated 80% power to genetic variant associations with risk of heart failure with an odds ratio of ≥1.10 for common variants (allele frequency ≥ 0.05) and ≥1.20 for low-frequency variants (allele frequency 0.01-0.05) at P < 5 × 10 under an additive genetic model.

Conclusions: HERMES is a global collaboration aiming to (i) identify the genetic determinants of heart failure; (ii) generate insights into the causal pathways leading to heart failure and enable genetic approaches to target prioritization; and (iii) develop genomic tools for disease stratification and risk prediction.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ehf2.13517DOI Listing
September 2021

Body fat composition and risk of rheumatoid arthritis: Mendelian randomization study.

Arthritis Rheumatol 2021 Apr 12. Epub 2021 Apr 12.

University of Liverpool, Liverpool, UK.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/art.41766DOI Listing
April 2021

Fine-scale population structure in the UK Biobank: implications for genome-wide association studies.

Hum Mol Genet 2020 09;29(16):2803-2811

Department of Biostatistics, University of Liverpool, Liverpool L69 3GA, UK.

The UK Biobank is a prospective study of more than 500 000 participants, which has aggregated data from questionnaires, physical measures, biomarkers, imaging and follow-up for a wide range of health-related outcomes, together with genome-wide genotyping supplemented with high-density imputation. Previous studies have highlighted fine-scale population structure in the UK on a North-West to South-East cline, but the impact of unmeasured geographical confounding on genome-wide association studies (GWAS) of complex human traits in the UK Biobank has not been investigated. We considered 368 325 white British individuals from the UK Biobank and performed GWAS of their birth location. We demonstrate that widely used approaches to adjust for population structure, including principal component analysis and mixed modelling with a random effect for a genetic relationship matrix, cannot fully account for the fine-scale geographical confounding in the UK Biobank. We observe significant genetic correlation of birth location with a range of lifestyle-related traits, including body-mass index and fat mass, hypertension and lung function, even after adjustment for population structure. Variants driving associations with birth location are also strongly associated with many of these lifestyle-related traits after correction for population structure, indicating that there could be environmental factors that are confounded with geography that have not been adequately accounted for. Our findings highlight the need for caution in the interpretation of lifestyle-related trait GWAS in UK Biobank, particularly in loci demonstrating strong residual association with birth location.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddaa157DOI Listing
September 2020

Multi-ancestry GWAS of the electrocardiographic PR interval identifies 202 loci underlying cardiac conduction.

Nat Commun 2020 05 21;11(1):2542. Epub 2020 May 21.

Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.

The electrocardiographic PR interval reflects atrioventricular conduction, and is associated with conduction abnormalities, pacemaker implantation, atrial fibrillation (AF), and cardiovascular mortality. Here we report a multi-ancestry (N = 293,051) genome-wide association meta-analysis for the PR interval, discovering 202 loci of which 141 have not previously been reported. Variants at identified loci increase the percentage of heritability explained, from 33.5% to 62.6%. We observe enrichment for cardiac muscle developmental/contractile and cytoskeletal genes, highlighting key regulation processes for atrioventricular conduction. Additionally, 8 loci not previously reported harbor genes underlying inherited arrhythmic syndromes and/or cardiomyopathies suggesting a role for these genes in cardiovascular pathology in the general population. We show that polygenic predisposition to PR interval duration is an endophenotype for cardiovascular disease, including distal conduction disease, AF, and atrioventricular pre-excitation. These findings advance our understanding of the polygenic basis of cardiac conduction, and the genetic relationship between PR interval duration and cardiovascular disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-020-15706-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7242331PMC
May 2020

Education Level Predicts Appropriate Follow-Up of Incidental Findings From Lung Cancer Screening.

J Am Coll Radiol 2020 May 10;17(5):613-619. Epub 2020 Jan 10.

Department of Radiology and Radiologic Sciences, Vanderbilt University Medical Center, Nashville, Tennessee.

Purpose: The aim of this study was to identify predictors of appropriate follow-up for clinically significant incidental findings (IFs) detected with low-dose CT during lung cancer screening.

Methods: Charts of 1,458 prospectively enrolled lung screening patients from January 1, 2015, to October 31, 2018, were reviewed. IFs, other than coronary artery calcification and emphysema, were identified. ACR practice guidelines defined appropriate patient follow-up. Patient demographic and social characteristics were obtained from the initial shared decision-making visit and the electronic medical record. Factors of interest included age, gender, race, education level, and insurance status. Education level was reported as high school graduate or less or education past high school. A multivariate logistic regression was estimated to assess patient factors associated with appropriate follow-up.

Results: One hundred thirty-eight participants (9%) with 141 actionable IFs were identified. The overall appropriate follow-up rate was 82%. The most common IFs were renal lesions (16%), dilated thoracic aorta (10%), and pulmonary fibrosis (10%). Univariate analysis of appropriate patient follow-up revealed a significant difference for education level (P = .02). A greater than high school education remained strongly associated with appropriate follow-up after controlling for other demographic factors.

Conclusions: Appropriate patient follow-up of clinically significant IFs from lung cancer screening is a well-recognized avenue to improve population health. Education level is a significant independent predictor of appropriate follow-up of IFs, whether as a surrogate for low socioeconomic status or as an indication of health literacy. To address these realities, lung screening shared decision making should adapt to consider health care access and health literacy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jacr.2019.12.014DOI Listing
May 2020

Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure.

Nat Commun 2020 01 9;11(1):163. Epub 2020 Jan 9.

Department of Biostatistics, University of Liverpool, Liverpool, UK.

Heart failure (HF) is a leading cause of morbidity and mortality worldwide. A small proportion of HF cases are attributable to monogenic cardiomyopathies and existing genome-wide association studies (GWAS) have yielded only limited insights, leaving the observed heritability of HF largely unexplained. We report results from a GWAS meta-analysis of HF comprising 47,309 cases and 930,014 controls. Twelve independent variants at 11 genomic loci are associated with HF, all of which demonstrate one or more associations with coronary artery disease (CAD), atrial fibrillation, or reduced left ventricular function, suggesting shared genetic aetiology. Functional analysis of non-CAD-associated loci implicate genes involved in cardiac development (MYOZ1, SYNPO2L), protein homoeostasis (BAG3), and cellular senescence (CDKN1A). Mendelian randomisation analysis supports causal roles for several HF risk factors, and demonstrates CAD-independent effects for atrial fibrillation, body mass index, and hypertension. These findings extend our knowledge of the pathways underlying HF and may inform new therapeutic strategies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-019-13690-5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6952380PMC
January 2020

Genome-wide association meta-analyses and fine-mapping elucidate pathways influencing albuminuria.

Nat Commun 2019 09 11;10(1):4130. Epub 2019 Sep 11.

Department of Medicine, Division of Nephrology and Hypertension, University of Utah, Salt Lake City, UT, USA.

Increased levels of the urinary albumin-to-creatinine ratio (UACR) are associated with higher risk of kidney disease progression and cardiovascular events, but underlying mechanisms are incompletely understood. Here, we conduct trans-ethnic (n = 564,257) and European-ancestry specific meta-analyses of genome-wide association studies of UACR, including ancestry- and diabetes-specific analyses, and identify 68 UACR-associated loci. Genetic correlation analyses and risk score associations in an independent electronic medical records database (n = 192,868) reveal connections with proteinuria, hyperlipidemia, gout, and hypertension. Fine-mapping and trans-Omics analyses with gene expression in 47 tissues and plasma protein levels implicate genes potentially operating through differential expression in kidney (including TGFB1, MUC1, PRKCI, and OAF), and allow coupling of UACR associations to altered plasma OAF concentrations. Knockdown of OAF and PRKCI orthologs in Drosophila nephrocytes reduces albumin endocytosis. Silencing fly PRKCI further impairs slit diaphragm formation. These results generate a priority list of genes and pathways for translational research to reduce albuminuria.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-019-11576-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6739370PMC
September 2019

A catalog of genetic loci associated with kidney function from analyses of a million individuals.

Nat Genet 2019 06 31;51(6):957-972. Epub 2019 May 31.

Diabetes and Cardiovascular Disease-Genetic Epidemiology, Department of Clincial Sciences in Malmö, Lund University, Malmö, Sweden.

Chronic kidney disease (CKD) is responsible for a public health burden with multi-systemic complications. Through trans-ancestry meta-analysis of genome-wide association studies of estimated glomerular filtration rate (eGFR) and independent replication (n = 1,046,070), we identified 264 associated loci (166 new). Of these, 147 were likely to be relevant for kidney function on the basis of associations with the alternative kidney function marker blood urea nitrogen (n = 416,178). Pathway and enrichment analyses, including mouse models with renal phenotypes, support the kidney as the main target organ. A genetic risk score for lower eGFR was associated with clinically diagnosed CKD in 452,264 independent individuals. Colocalization analyses of associations with eGFR among 783,978 European-ancestry individuals and gene expression across 46 human tissues, including tubulo-interstitial and glomerular kidney compartments, identified 17 genes differentially expressed in kidney. Fine-mapping highlighted missense driver variants in 11 genes and kidney-specific regulatory variants. These results provide a comprehensive priority list of molecular targets for translational research.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-019-0407-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6698888PMC
June 2019

New genetic signals for lung function highlight pathways and chronic obstructive pulmonary disease associations across multiple ancestries.

Nat Genet 2019 03 25;51(3):481-493. Epub 2019 Feb 25.

Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.

Reduced lung function predicts mortality and is key to the diagnosis of chronic obstructive pulmonary disease (COPD). In a genome-wide association study in 400,102 individuals of European ancestry, we define 279 lung function signals, 139 of which are new. In combination, these variants strongly predict COPD in independent populations. Furthermore, the combined effect of these variants showed generalizability across smokers and never smokers, and across ancestral groups. We highlight biological pathways, known and potential drug targets for COPD and, in phenome-wide association studies, autoimmune-related and other pleiotropic effects of lung function-associated variants. This new genetic evidence has potential to improve future preventive and therapeutic strategies for COPD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-018-0321-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6397078PMC
March 2019

Protein-coding variants implicate novel genes related to lipid homeostasis contributing to body-fat distribution.

Nat Genet 2019 03 18;51(3):452-469. Epub 2019 Feb 18.

Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA.

Body-fat distribution is a risk factor for adverse cardiovascular health consequences. We analyzed the association of body-fat distribution, assessed by waist-to-hip ratio adjusted for body mass index, with 228,985 predicted coding and splice site variants available on exome arrays in up to 344,369 individuals from five major ancestries (discovery) and 132,177 European-ancestry individuals (validation). We identified 15 common (minor allele frequency, MAF ≥5%) and nine low-frequency or rare (MAF <5%) coding novel variants. Pathway/gene set enrichment analyses identified lipid particle, adiponectin, abnormal white adipose tissue physiology and bone development and morphology as important contributors to fat distribution, while cross-trait associations highlight cardiometabolic traits. In functional follow-up analyses, specifically in Drosophila RNAi-knockdowns, we observed a significant increase in the total body triglyceride levels for two genes (DNAH10 and PLXND1). We implicate novel genes in fat distribution, stressing the importance of interrogating low-frequency and protein-coding variants.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-018-0334-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6560635PMC
March 2019

Trans-ethnic kidney function association study reveals putative causal genes and effects on kidney-specific disease aetiologies.

Nat Commun 2019 01 3;10(1):29. Epub 2019 Jan 3.

Department of Pathology, Erasmus Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, Netherlands.

Chronic kidney disease (CKD) affects ~10% of the global population, with considerable ethnic differences in prevalence and aetiology. We assemble genome-wide association studies of estimated glomerular filtration rate (eGFR), a measure of kidney function that defines CKD, in 312,468 individuals of diverse ancestry. We identify 127 distinct association signals with homogeneous effects on eGFR across ancestries and enrichment in genomic annotations including kidney-specific histone modifications. Fine-mapping reveals 40 high-confidence variants driving eGFR associations and highlights putative causal genes with cell-type specific expression in glomerulus, and in proximal and distal nephron. Mendelian randomisation supports causal effects of eGFR on overall and cause-specific CKD, kidney stone formation, diastolic blood pressure and hypertension. These results define novel molecular mechanisms and putative causal genes for eGFR, offering insight into clinical outcomes and routes to CKD treatment development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-018-07867-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6318312PMC
January 2019

Trans-ethnic association study of blood pressure determinants in over 750,000 individuals.

Nat Genet 2019 01 21;51(1):51-62. Epub 2018 Dec 21.

MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK.

In this trans-ethnic multi-omic study, we reinterpret the genetic architecture of blood pressure to identify genes, tissues, phenomes and medication contexts of blood pressure homeostasis. We discovered 208 novel common blood pressure SNPs and 53 rare variants in genome-wide association studies of systolic, diastolic and pulse pressure in up to 776,078 participants from the Million Veteran Program (MVP) and collaborating studies, with analysis of the blood pressure clinical phenome in MVP. Our transcriptome-wide association study detected 4,043 blood pressure associations with genetically predicted gene expression of 840 genes in 45 tissues, and mouse renal single-cell RNA sequencing identified upregulated blood pressure genes in kidney tubule cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-018-0303-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6365102PMC
January 2019

Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps.

Nat Genet 2018 11 8;50(11):1505-1513. Epub 2018 Oct 8.

Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore.

We expanded GWAS discovery for type 2 diabetes (T2D) by combining data from 898,130 European-descent individuals (9% cases), after imputation to high-density reference panels. With these data, we (i) extend the inventory of T2D-risk variants (243 loci, 135 newly implicated in T2D predisposition, comprising 403 distinct association signals); (ii) enrich discovery of lower-frequency risk alleles (80 index variants with minor allele frequency <5%, 14 with estimated allelic odds ratio >2); (iii) substantially improve fine-mapping of causal variants (at 51 signals, one variant accounted for >80% posterior probability of association (PPA)); (iv) extend fine-mapping through integration of tissue-specific epigenomic information (islet regulatory annotations extend the number of variants with PPA >80% to 73); (v) highlight validated therapeutic targets (18 genes with associations attributable to coding variants); and (vi) demonstrate enhanced potential for clinical translation (genome-wide chip heritability explains 18% of T2D risk; individuals in the extremes of a T2D polygenic risk score differ more than ninefold in prevalence).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-018-0241-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6287706PMC
November 2018

Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes.

Nat Genet 2018 04 9;50(4):559-571. Epub 2018 Apr 9.

Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands.

We aggregated coding variant data for 81,412 type 2 diabetes cases and 370,832 controls of diverse ancestry, identifying 40 coding variant association signals (P < 2.2 × 10); of these, 16 map outside known risk-associated loci. We make two important observations. First, only five of these signals are driven by low-frequency variants: even for these, effect sizes are modest (odds ratio ≤1.29). Second, when we used large-scale genome-wide association data to fine-map the associated variants in their regional context, accounting for the global enrichment of complex trait associations in coding sequence, compelling evidence for coding variant causality was obtained for only 16 signals. At 13 others, the associated coding variants clearly represent 'false leads' with potential to generate erroneous mechanistic inference. Coding variant associations offer a direct route to biological insight for complex diseases and identification of validated therapeutic targets; however, appropriate mechanistic inference requires careful specification of their causal contribution to disease predisposition.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-018-0084-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5898373PMC
April 2018

Publisher Correction: Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity.

Nat Genet 2018 05;50(5):766-767

Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany.

In the version of this article originally published, one of the two authors with the name Wei Zhao was omitted from the author list and the affiliations for both authors were assigned to the single Wei Zhao in the author list. In addition, the ORCID for Wei Zhao (Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA) was incorrectly assigned to author Wei Zhou. The errors have been corrected in the HTML and PDF versions of the article.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-018-0082-3DOI Listing
May 2018

Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity.

Nat Genet 2018 01 22;50(1):26-41. Epub 2017 Dec 22.

Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany.

Genome-wide association studies (GWAS) have identified >250 loci for body mass index (BMI), implicating pathways related to neuronal biology. Most GWAS loci represent clusters of common, noncoding variants from which pinpointing causal genes remains challenging. Here we combined data from 718,734 individuals to discover rare and low-frequency (minor allele frequency (MAF) < 5%) coding variants associated with BMI. We identified 14 coding variants in 13 genes, of which 8 variants were in genes (ZBTB7B, ACHE, RAPGEF3, RAB21, ZFHX3, ENTPD6, ZFR2 and ZNF169) newly implicated in human obesity, 2 variants were in genes (MC4R and KSR2) previously observed to be mutated in extreme obesity and 2 variants were in GIPR. The effect sizes of rare variants are ~10 times larger than those of common variants, with the largest effect observed in carriers of an MC4R mutation introducing a stop codon (p.Tyr35Ter, MAF = 0.01%), who weighed ~7 kg more than non-carriers. Pathway analyses based on the variants associated with BMI confirm enrichment of neuronal genes and provide new evidence for adipocyte and energy expenditure biology, widening the potential of genetically supported therapeutic targets in obesity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-017-0011-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5945951PMC
January 2018

New Blood Pressure-Associated Loci Identified in Meta-Analyses of 475 000 Individuals.

Circ Cardiovasc Genet 2017 Oct;10(5)

Background: Genome-wide association studies have recently identified >400 loci that harbor DNA sequence variants that influence blood pressure (BP). Our earlier studies identified and validated 56 single nucleotide variants (SNVs) associated with BP from meta-analyses of exome chip genotype data. An additional 100 variants yielded suggestive evidence of association.

Methods And Results: Here, we augment the sample with 140 886 European individuals from the UK Biobank, in whom 77 of the 100 suggestive SNVs were available for association analysis with systolic BP or diastolic BP or pulse pressure. We performed 2 meta-analyses, one in individuals of European, South Asian, African, and Hispanic descent (pan-ancestry, ≈475 000), and the other in the subset of individuals of European descent (≈423 000). Twenty-one SNVs were genome-wide significant (<5×10) for BP, of which 4 are new BP loci: rs9678851 (missense, ), rs7437940 (), rs13303 (missense, ), and rs1055144 (). In addition, we identified a potentially independent novel BP-associated SNV, rs3416322 (missense, ) at a known locus, uncorrelated with the previously reported SNVs. Two SNVs are associated with expression levels of nearby genes, and SNVs at 3 loci are associated with other traits. One SNV with a minor allele frequency <0.01, (rs3025380 at ) was genome-wide significant.

Conclusions: We report 4 novel loci associated with BP regulation, and 1 independent variant at an established BP locus. This analysis highlights several candidate genes with variation that alter protein function or gene expression for potential follow-up.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCGENETICS.117.001778DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5776077PMC
October 2017

Rare and low-frequency coding variants alter human adult height.

Nature 2017 02 1;542(7640):186-190. Epub 2017 Feb 1.

Netherlands Comprehensive Cancer Organisation, Utrecht, 3501 DB, The Netherlands.

Height is a highly heritable, classic polygenic trait with approximately 700 common associated variants identified through genome-wide association studies so far. Here, we report 83 height-associated coding variants with lower minor-allele frequencies (in the range of 0.1-4.8%) and effects of up to 2 centimetres per allele (such as those in IHH, STC2, AR and CRISPLD2), greater than ten times the average effect of common variants. In functional follow-up studies, rare height-increasing alleles of STC2 (giving an increase of 1-2 centimetres per allele) compromised proteolytic inhibition of PAPP-A and increased cleavage of IGFBP-4 in vitro, resulting in higher bioavailability of insulin-like growth factors. These 83 height-associated variants overlap genes that are mutated in monogenic growth disorders and highlight new biological candidates (such as ADAMTS3, IL11RA and NOX4) and pathways (such as proteoglycan and glycosaminoglycan synthesis) involved in growth. Our results demonstrate that sufficiently large sample sizes can uncover rare and low-frequency variants of moderate-to-large effect associated with polygenic human phenotypes, and that these variants implicate relevant genes and pathways.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature21039DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5302847PMC
February 2017

Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk.

Nat Genet 2017 Mar 30;49(3):403-415. Epub 2017 Jan 30.

Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK.

Elevated blood pressure is the leading heritable risk factor for cardiovascular disease worldwide. We report genetic association of blood pressure (systolic, diastolic, pulse pressure) among UK Biobank participants of European ancestry with independent replication in other cohorts, and robust validation of 107 independent loci. We also identify new independent variants at 11 previously reported blood pressure loci. In combination with results from a range of in silico functional analyses and wet bench experiments, our findings highlight new biological pathways for blood pressure regulation enriched for genes expressed in vascular tissues and identify potential therapeutic targets for hypertension. Results from genetic risk score models raise the possibility of a precision medicine approach through early lifestyle intervention to offset the impact of blood pressure-raising genetic variants on future cardiovascular disease risk.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ng.3768DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5972004PMC
March 2017

Guidance for the utility of linear models in meta-analysis of genetic association studies of binary phenotypes.

Eur J Hum Genet 2017 02 16;25(2):240-245. Epub 2016 Nov 16.

Department of Biostatistics, University of Liverpool, Liverpool, UK.

Linear mixed models are increasingly used for the analysis of genome-wide association studies (GWAS) of binary phenotypes because they can efficiently and robustly account for population stratification and relatedness through inclusion of random effects for a genetic relationship matrix. However, the utility of linear (mixed) models in the context of meta-analysis of GWAS of binary phenotypes has not been previously explored. In this investigation, we present simulations to compare the performance of linear and logistic regression models under alternative weighting schemes in a fixed-effects meta-analysis framework, considering designs that incorporate variable case-control imbalance, confounding factors and population stratification. Our results demonstrate that linear models can be used for meta-analysis of GWAS of binary phenotypes, without loss of power, even in the presence of extreme case-control imbalance, provided that one of the following schemes is used: (i) effective sample size weighting of Z-scores or (ii) inverse-variance weighting of allelic effect sizes after conversion onto the log-odds scale. Our conclusions thus provide essential recommendations for the development of robust protocols for meta-analysis of binary phenotypes with linear models.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ejhg.2016.150DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5237383PMC
February 2017

Meta-analysis identifies common and rare variants influencing blood pressure and overlapping with metabolic trait loci.

Nat Genet 2016 10 12;48(10):1162-70. Epub 2016 Sep 12.

Bill and Melinda Gates Foundation, Seattle, Washington, USA.

Meta-analyses of association results for blood pressure using exome-centric single-variant and gene-based tests identified 31 new loci in a discovery stage among 146,562 individuals, with follow-up and meta-analysis in 180,726 additional individuals (total n = 327,288). These blood pressure-associated loci are enriched for known variants for cardiometabolic traits. Associations were also observed for the aggregation of rare and low-frequency missense variants in three genes, NPR1, DBH, and PTPMT1. In addition, blood pressure associations at 39 previously reported loci were confirmed. The identified variants implicate biological pathways related to cardiometabolic traits, vascular function, and development. Several new variants are inferred to have roles in transcription or as hubs in protein-protein interaction networks. Genetic risk scores constructed from the identified variants were strongly associated with coronary disease and myocardial infarction. This large collection of blood pressure-associated loci suggests new therapeutic strategies for hypertension, emphasizing a link with cardiometabolic risk.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ng.3660DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5320952PMC
October 2016

Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension.

Nat Genet 2016 10 12;48(10):1151-1161. Epub 2016 Sep 12.

Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA.

High blood pressure is a major risk factor for cardiovascular disease and premature death. However, there is limited knowledge on specific causal genes and pathways. To better understand the genetics of blood pressure, we genotyped 242,296 rare, low-frequency and common genetic variants in up to 192,763 individuals and used ∼155,063 samples for independent replication. We identified 30 new blood pressure- or hypertension-associated genetic regions in the general population, including 3 rare missense variants in RBM47, COL21A1 and RRAS with larger effects (>1.5 mm Hg/allele) than common variants. Multiple rare nonsense and missense variant associations were found in A2ML1, and a low-frequency nonsense variant in ENPEP was identified. Our data extend the spectrum of allelic variation underlying blood pressure traits and hypertension, provide new insights into the pathophysiology of hypertension and indicate new targets for clinical intervention.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5056636PMC
http://dx.doi.org/10.1038/ng.3654DOI Listing
October 2016

Multi-ethnic genome-wide association study identifies novel locus for type 2 diabetes susceptibility.

Eur J Hum Genet 2016 08 18;24(8):1175-80. Epub 2016 May 18.

Department of Biostatistics, University of Liverpool, Liverpool, UK.

Genome-wide association studies (GWAS) have traditionally been undertaken in homogeneous populations from the same ancestry group. However, with the increasing availability of GWAS in large-scale multi-ethnic cohorts, we have evaluated a framework for detecting association of genetic variants with complex traits, allowing for population structure, and developed a powerful test of heterogeneity in allelic effects between ancestry groups. We have applied the methodology to identify and characterise loci associated with susceptibility to type 2 diabetes (T2D) using GWAS data from the Resource for Genetic Epidemiology on Adult Health and Aging, a large multi-ethnic population-based cohort, created for investigating the genetic and environmental basis of age-related diseases. We identified a novel locus for T2D susceptibility at genome-wide significance (P<5 × 10(-8)) that maps to TOMM40-APOE, a region previously implicated in lipid metabolism and Alzheimer's disease. We have also confirmed previous reports that single-nucleotide polymorphisms at the TCF7L2 locus demonstrate the greatest extent of heterogeneity in allelic effects between ethnic groups, with the lowest risk observed in populations of East Asian ancestry.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ejhg.2016.17DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4947384PMC
August 2016

Novel insights into the genetics of smoking behaviour, lung function, and chronic obstructive pulmonary disease (UK BiLEVE): a genetic association study in UK Biobank.

Lancet Respir Med 2015 Oct 27;3(10):769-81. Epub 2015 Sep 27.

Division of Respiratory Medicine, Queen's Medical Centre, University of Nottingham, Nottingham, UK.

Background: Understanding the genetic basis of airflow obstruction and smoking behaviour is key to determining the pathophysiology of chronic obstructive pulmonary disease (COPD). We used UK Biobank data to study the genetic causes of smoking behaviour and lung health.

Methods: We sampled individuals of European ancestry from UK Biobank, from the middle and extremes of the forced expiratory volume in 1 s (FEV1) distribution among heavy smokers (mean 35 pack-years) and never smokers. We developed a custom array for UK Biobank to provide optimum genome-wide coverage of common and low-frequency variants, dense coverage of genomic regions already implicated in lung health and disease, and to assay rare coding variants relevant to the UK population. We investigated whether there were shared genetic causes between different phenotypes defined by extremes of FEV1. We also looked for novel variants associated with extremes of FEV1 and smoking behaviour and assessed regions of the genome that had already shown evidence for a role in lung health and disease. We set genome-wide significance at p<5 × 10(-8).

Findings: UK Biobank participants were recruited from March 15, 2006, to July 7, 2010. Sample selection for the UK BiLEVE study started on Nov 22, 2012, and was completed on Dec 20, 2012. We selected 50,008 unique samples: 10,002 individuals with low FEV1, 10,000 with average FEV1, and 5002 with high FEV1 from each of the heavy smoker and never smoker groups. We noted a substantial sharing of genetic causes of low FEV1 between heavy smokers and never smokers (p=2.29 × 10(-16)) and between individuals with and without doctor-diagnosed asthma (p=6.06 × 10(-11)). We discovered six novel genome-wide significant signals of association with extremes of FEV1, including signals at four novel loci (KANSL1, TSEN54, TET2, and RBM19/TBX5) and independent signals at two previously reported loci (NPNT and HLA-DQB1/HLA-DQA2). These variants also showed association with COPD, including in individuals with no history of smoking. The number of copies of a 150 kb region containing the 5' end of KANSL1, a gene that is important for epigenetic gene regulation, was associated with extremes of FEV1. We also discovered five new genome-wide significant signals for smoking behaviour, including a variant in NCAM1 (chromosome 11) and a variant on chromosome 2 (between TEX41 and PABPC1P2) that has a trans effect on expression of NCAM1 in brain tissue.

Interpretation: By sampling from the extremes of the lung function distribution in UK Biobank, we identified novel genetic causes of lung function and smoking behaviour. These results provide new insight into the specific mechanisms underlying airflow obstruction, COPD, and tobacco addiction, and show substantial shared genetic architecture underlying airflow obstruction across individuals, irrespective of smoking behaviour and other airway disease.

Funding: Medical Research Council.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/S2213-2600(15)00283-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4593935PMC
October 2015

Whole exome re-sequencing implicates CCDC38 and cilia structure and function in resistance to smoking related airflow obstruction.

PLoS Genet 2014 May 1;10(5):e1004314. Epub 2014 May 1.

University of Leicester, Department of Health Sciences, Leicester, United Kingdom; National Institute for Health Research (NIHR) Leicester Respiratory Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom.

Chronic obstructive pulmonary disease (COPD) is a leading cause of global morbidity and mortality and, whilst smoking remains the single most important risk factor, COPD risk is heritable. Of 26 independent genomic regions showing association with lung function in genome-wide association studies, eleven have been reported to show association with airflow obstruction. Although the main risk factor for COPD is smoking, some individuals are observed to have a high forced expired volume in 1 second (FEV1) despite many years of heavy smoking. We hypothesised that these "resistant smokers" may harbour variants which protect against lung function decline caused by smoking and provide insight into the genetic determinants of lung health. We undertook whole exome re-sequencing of 100 heavy smokers who had healthy lung function given their age, sex, height and smoking history and applied three complementary approaches to explore the genetic architecture of smoking resistance. Firstly, we identified novel functional variants in the "resistant smokers" and looked for enrichment of these novel variants within biological pathways. Secondly, we undertook association testing of all exonic variants individually with two independent control sets. Thirdly, we undertook gene-based association testing of all exonic variants. Our strongest signal of association with smoking resistance for a non-synonymous SNP was for rs10859974 (P = 2.34 × 10(-4)) in CCDC38, a gene which has previously been reported to show association with FEV1/FVC, and we demonstrate moderate expression of CCDC38 in bronchial epithelial cells. We identified an enrichment of novel putatively functional variants in genes related to cilia structure and function in resistant smokers. Ciliary function abnormalities are known to be associated with both smoking and reduced mucociliary clearance in patients with COPD. We suggest that genetic influences on the development or function of cilia in the bronchial epithelium may affect growth of cilia or the extent of damage caused by tobacco smoke.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pgen.1004314DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4006731PMC
May 2014

New features in surgical neurology international for 2013.

Surg Neurol Int 2013 22;4:33. Epub 2013 Mar 22.

Editorial Department, Surgical Neurology International, Rancho Mirage, CA 92270, USA.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4103/2152-7806.109510DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3622391PMC
April 2013
-->