Publications by authors named "James H Meador-Woodruff"

99 Publications

mTOR kinase activity disrupts a phosphorylation signaling network in schizophrenia brain.

Mol Psychiatry 2021 May 14. Epub 2021 May 14.

Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.

The AKT-mTOR signaling transduction pathway plays an important role in neurodevelopment and synaptic plasticity. mTOR is a serine/threonine kinase that modulates signals from multiple neurotransmitters and phosphorylates specific proteins to regulate protein synthesis and cytoskeletal organization. There is substantial evidence demonstrating abnormalities in AKT expression and activity in different schizophrenia (SZ) models. However, direct evidence for dysregulated mTOR kinase activity and its consequences on downstream effector proteins in SZ pathophysiology is lacking. Recently, we reported reduced phosphorylation of mTOR at an activating site and abnormal mTOR complex formation in the SZ dorsolateral prefrontal cortex (DLPFC). Here, we expand on our hypothesis of disrupted mTOR signaling in the SZ brain and studied the expression and activity of downstream effector proteins of mTOR complexes and the kinase activity profiles of SZ subjects. We found that S6RP phosphorylation, downstream of mTOR complex I, is reduced, whereas PKCα phosphorylation, downstream of mTOR complex II, is increased in SZ DLPFC. In rats chronically treated with haloperidol, we showed that S6RP phosphorylation is increased in the rat frontal cortex, suggesting a potential novel mechanism of action for antipsychotics. We also demonstrated key differences in kinase signaling networks between SZ and comparison subjects for both males and females using kinome peptide arrays. We further investigated the role of mTOR kinase activity by inhibiting it with rapamycin in postmortem tissue and compared the impact of mTOR inhibition in SZ and comparison subjects using kinome arrays. We found that SZ subjects are globally more sensitive to rapamycin treatment and AMP-activated protein kinase (AMPK) contributes to this differential kinase activity. Together, our findings provide new insights into the role of mTOR as a master regulator of kinase activity in SZ and suggest potential targets for therapeutic intervention.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41380-021-01135-9DOI Listing
May 2021

Evidence for altered energy metabolism, increased lactate, and decreased pH in schizophrenia brain: A focused review and meta-analysis of human postmortem and magnetic resonance spectroscopy studies.

Schizophr Res 2020 Sep 18;223:29-42. Epub 2020 Sep 18.

University of Alabama at Birmingham, Birmingham, AL, United States of America.

Though the pathophysiology of schizophrenia remains poorly understood, altered brain energy metabolism is increasingly implicated. Here, we conduct meta-analyses of the available human studies measuring lactate or pH in schizophrenia brain and discuss the accumulating evidence for increased lactate and decreased pH in schizophrenia brain and evidence linking these to negative and cognitive symptom severity. Meta-analysis of six postmortem studies revealed a significant increase in lactate in schizophrenia brain while meta-analysis of 14 magnetic resonance spectroscopy studies did not reveal a significant change in brain pH in schizophrenia. However, only five of these studies were likely sufficiently powered to detect differences in brain pH, and meta-analysis of these five studies found a nonsignificant decrease in pH in schizophrenia brain. Next, we discuss evidence for altered brain energy metabolism in schizophrenia and how this may underlie a buildup of lactate and decreased pH. This alteration, similar to the Warburg effect extensively described in cancer biology, involves diminished tricarboxylic acid cycle and oxidative phosphorylation along with a shift toward increased reliance on glycolysis for energy production. We then explore the role that mitochondrial dysfunction, oxidative stress, and hypoxia-related changes in gene expression likely play in this shift in brain energy metabolism and address the functional consequences of lowered brain pH in schizophrenia including alterations in neurotransmitter regulation, mRNA stability, and overall patterns of gene expression. Finally, we discuss how altered energy metabolism in schizophrenia brain may serve as an effective target in the treatment of this illness.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.schres.2020.09.003DOI Listing
September 2020

Post-translational protein modifications in schizophrenia.

NPJ Schizophr 2020 Mar 2;6(1). Epub 2020 Mar 2.

Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.

Research investigating the pathophysiology of schizophrenia has not yet precisely defined the molecular phenotype of this disorder. Many studies have investigated cellular dysfunction by examining expression levels of molecular targets in postmortem patient brain; however, inconsistencies between transcript and protein measures in schizophrenia are common in the field and represent a challenge to the identification of a unified model of schizophrenia pathogenesis. In humans, >4800 unique proteins are expressed, and the majority of these are modified by glycans and/or lipids. Estimates indicate ~70% of all eukaryotic proteins are modified by at least one type of glycosylation, while nearly 20% of all proteins are known to be lipid-modified. Protein post-translational modification (PTM) by glycosylation and lipidation rely on the spatiotemporal colocalization of enzyme, substrate, and glycan or lipid donor molecule and do not require an upstream "blueprint" or specialized processing machinery for synthesis. Glycan and lipid PTMs can thus facilitate cellular adaptation to environmental signals more rapidly than changes of gene or protein expression, and can significantly impact the localization, function, and interactions of modified substrates, though relatively few studies in schizophrenia have evaluated the PTM status of target proteins. A growing body of literature reports glycosylation and lipidation abnormalities in schizophrenia brain as well as in patient peripheral fluids. In this review, we explain the functional significance of key glycan and lipid PTMs and summarize current findings associated with abnormal glycosylation and lipidation in this illness.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41537-020-0093-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7051976PMC
March 2020

Protein expression of prenyltransferase subunits in postmortem schizophrenia dorsolateral prefrontal cortex.

Transl Psychiatry 2020 01 10;10(1). Epub 2020 Jan 10.

Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294-0021, USA.

The pathophysiology of schizophrenia includes altered neurotransmission, dysregulated intracellular signaling pathway activity, and abnormal dendritic morphology that contribute to deficits of synaptic plasticity in the disorder. These processes all require dynamic protein-protein interactions at cell membranes. Lipid modifications target proteins to membranes by increasing substrate hydrophobicity by the addition of a fatty acid or isoprenyl moiety, and recent evidence suggests that dysregulated posttranslational lipid modifications may play a role in multiple neuropsychiatric disorders, including schizophrenia. Consistent with these emerging findings, we have recently reported decreased protein S-palmitoylation in schizophrenia. Protein prenylation is a lipid modification that occurs upstream of S-palmitoylation on many protein substrates, facilitating membrane localization and activity of key intracellular signaling proteins. Accordingly, we hypothesized that, in addition to palmitoylation, protein prenylation may be abnormal in schizophrenia. To test this, we assayed protein expression of the five prenyltransferase subunits (FNTA, FNTB, PGGT1B, RABGGTA, and RABGGTB) in postmortem dorsolateral prefrontal cortex from patients with schizophrenia and paired comparison subjects (n = 13 pairs). We found decreased levels of FNTA (14%), PGGT1B (13%), and RABGGTB (8%) in schizophrenia. To determine whether upstream or downstream factors may be driving these changes, we also assayed protein expression of the isoprenoid synthases FDPS and GGPS1 and prenylation-dependent processing enzymes RCE and ICMT. We found these upstream and downstream enzymes to have normal protein expression. To rule out effects from chronic antipsychotic treatment, we assayed FNTA, PGGT1B, and RABGGTB in the cortex from rats treated long-term with haloperidol decanoate and found no change in the expression of these proteins. Given the role prenylation plays in localization of key signaling proteins found at the synapse, these data offer a potential mechanism underlying abnormal protein-protein interactions and protein localization in schizophrenia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41398-019-0610-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7026430PMC
January 2020

AMPA receptor subunit localization in schizophrenia anterior cingulate cortex.

Schizophr Res 2020 Jan 31. Epub 2020 Jan 31.

University of Alabama at Birmingham, Department of Psychiatry and Behavioral Neurobiology, 1720 2nd Ave S., Birmingham, AL 35294, United States of America.

The glutamate hypothesis of schizophrenia suggests that altered glutamatergic transmission occurs in this illness, although precise mechanisms of dysregulation remain elusive. AMPA receptors (AMPARs), a subtype of ionotropic glutamate receptor, are the main facilitators of fast, excitatory neurotransmission in the brain, and changes in AMPAR number or composition at synapses can regulate synaptic strength and plasticity. Prior evidence of abnormal expression of transmembrane AMPAR regulatory proteins (TARPs) in schizophrenia suggests defective trafficking of AMPARs, which we propose could lead to altered AMPAR expression at excitatory synapses. To test this hypothesis, we isolated subcellular fractions enriched for endoplasmic reticulum (ER) and synapses from anterior cingulate cortex (ACC) from schizophrenia (N = 18) and comparison (N = 18) subjects, and measured glutamate receptor subunits (GluA1, GluA2, GluA3, GluA4, NR1, NR2A, NR2B, and NR3A) and TARP member γ2 (stargazin) in homogenates and subcellular fractions by western blot analysis. We found decreased expression of stargazin and an increased ratio of GluA2:stargazin in ACC homogenates, while in the synapse fraction we identified a decrease in GluA1 and reduced ratios of GluA1:stargazin and GluA1:GluA2 in schizophrenia. The amount of stargazin in the ER fraction was not different, but the relative amount of ER/Total stargazin was increased in schizophrenia. Together, these findings suggest that associations between stargazin and AMPA subunits are abnormal, potentially affecting forward trafficking or synaptic stability of GluA1-containing AMPARs. These data provide evidence that altered interactions with trafficking proteins may contribute to glutamate dysregulation in schizophrenia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.schres.2020.01.025DOI Listing
January 2020

Downregulated AKT-mTOR signaling pathway proteins in dorsolateral prefrontal cortex in Schizophrenia.

Neuropsychopharmacology 2020 05 17;45(6):1059-1067. Epub 2020 Jan 17.

Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, 1719 6th Avenue South, Birmingham, AL, 35294-0021, USA.

Abnormal neurotransmission is central to schizophrenia (SZ). Alterations across multiple neurotransmitter systems in SZ suggest that this illness may be associated with dysregulation of core intracellular processes such as signaling pathways that underlie the regulation and integration of these systems. The AKT-mTOR signaling cascade has been implicated in SZ by gene association, postmortem brain and animal studies. AKT and mTOR are serine/threonine kinases which play important roles in cell growth, proliferation, survival, and differentiation. Both AKT and mTOR require phosphorylation at specific sites for their complete activation. mTOR forms two functionally distinct multiprotein complexes, mTOR Complex 1 (mTORC1) and Complex 2 (mTORC2). mTORC1 mediates ribosome biogenesis, protein translation, and autophagy, whereas mTORC2 contributes to actin dynamics. Altered protein synthesis and actin dynamics can lead to an abnormal neuronal morphology resulting in deficits in learning and memory. Currently, there is a lack of direct evidence to support the hypothesis of disrupted mTOR signaling in SZ, and we have addressed this by characterizing this signaling pathway in SZ brain. We found a reduction in AKT and mTOR protein expression and/or phosphorylation state in dorsolateral prefrontal cortex (DLPFC) from 22 pairs of SZ and matched comparison subjects. We also found reduced protein expression of GβL, a subunit protein common to both mTOR complexes. We further investigated mTOR complex-specific subunit composition and phosphorylation state, and found abnormal mTOR expression in both complexes in SZ DLPFC. These findings provide evidence that proteins associated with the AKT-mTOR signaling cascade are downregulated in SZ DLPFC.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41386-020-0614-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7162985PMC
May 2020

Dysregulation of the unfolded protein response (UPR) in the dorsolateral prefrontal cortex in elderly patients with schizophrenia.

Mol Psychiatry 2021 04 2;26(4):1321-1331. Epub 2019 Oct 2.

Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.

Abnormalities in protein localization, function, and posttranslational modifications are targets of schizophrenia (SCZ) research. As a major contributor to the synthesis, folding, trafficking, and modification of proteins, the endoplasmic reticulum (ER) is well-positioned to sense cellular stress. The unfolded protein response (UPR) is an evolutionarily conserved adaptive reaction to environmental and pathological perturbation in ER function. The UPR is a highly orchestrated and complex cellular response, which is mediated through the ER chaperone protein, BiP, three known ER transmembrane stress sensors, protein kinase RNA-like ER kinase (PERK), activating transcription factor-6 (ATF6), inositol requiring enzyme 1α (IRE1α), and their downstream effectors. In this study, we measured protein expression and phosphorylation states of UPR sensor pathway proteins in the dorsolateral prefrontal cortex (DLPFC) of 22 matched pairs of elderly SCZ and comparison subjects. We observed increased protein expression of BiP, decreased PERK, and decreased phosphorylation of IRE1α. We also observed decreased p-JNK2 and increased sXBP1, downstream targets of the IRE1α arm of the UPR. The disconnect between decreased p-IRE1α and increased sXBP1 protein expression led us to measure sXbp1 mRNA. We observed increased expression of the ratio of sXbp1/uXbp1 transcripts, suggesting that splicing of Xbp1 mRNA by IRE1α is increased and drives upregulation of sXBP1 protein expression. These findings suggest an abnormal pattern of UPR activity in SCZ, with specific dysregulation of the IRE1α arm. Dysfunction of this system may lead to abnormal responses to cellular stressors and contribute to protein processing abnormalities previously observed in SCZ.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41380-019-0537-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7113111PMC
April 2021

Kinase network dysregulation in a human induced pluripotent stem cell model of DISC1 schizophrenia.

Mol Omics 2019 06;15(3):173-188

Center for Neurosciences (C4N), Department of Pharmaceutical Biotechnology and Molecular Biology, Vrije Universiteit Brussel, Brussels, Belgium.

Protein kinases orchestrate signal transduction pathways involved in central nervous system functions ranging from neurodevelopment to synaptic transmission and plasticity. Abnormalities in kinase-mediated signaling are involved in the pathophysiology of neurological disorders, including neuropsychiatric disorders. Here, we expand on the hypothesis that kinase networks are dysregulated in schizophrenia. We investigated changes in serine/threonine kinase activity in cortical excitatory neurons differentiated from induced pluripotent stem cells (iPSCs) from a schizophrenia patient presenting with a 4 bp mutation in the disrupted in schizophrenia 1 (DISC1) gene and a corresponding control. Using kinome peptide arrays, we demonstrate large scale abnormalities in DISC1 cells, including a global depression of serine/threonine kinase activity, and changes in activity of kinases, including AMP-activated protein kinase (AMPK), extracellular signal-regulated kinases (ERK), and thousand-and-one amino acid (TAO) kinases. Using isogenic cell lines in which the DISC1 mutation is either introduced in the control cell line, or rescued in the schizophrenia cell line, we ascribe most of these changes to a direct effect of the presence of the DISC1 mutation. Investigating the gene expression signatures downstream of the DISC1 kinase network, and mapping them on perturbagen signatures obtained from the Library of Integrated Network-based Cellular Signatures (LINCS) database, allowed us to propose novel drug targets able to reverse the DISC1 kinase dysregulation gene expression signature. Altogether, our findings provide new insight into abnormalities of kinase networks in schizophrenia and suggest possible targets for disease intervention.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8mo00173aDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6563817PMC
June 2019

Fractionation of Subcellular Compartments from Human Brain Tissue.

Methods Mol Biol 2019 ;1941:201-223

Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.

Subcellular fractionation methods permit the isolation, purification, and/or enrichment of specific cellular compartments from complex tissue samples. Enrichment of multiple subcellular compartments from the same tissue sample permits comparisons of the spatial distribution of target proteins between specific intracellular compartments and, in some cases, can provide information about spatiotemporal processing of key cellular components. Here we describe a method to generate subcellular fractions enriched for heavy membranes and nuclei, rough and smooth endoplasmic reticulum membranes, light membranes and cytosol, synapses, and other intermediate cellular membranes from postmortem human brain tissue. These subcellular fractions can be used in a variety of downstream applications to assess the localization, relative abundance, and stoichiometry of glutamate receptor subunits along the forward trafficking pathway.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-9077-1_14DOI Listing
August 2019

Intracellular compartment-specific proteasome dysfunction in postmortem cortex in schizophrenia subjects.

Mol Psychiatry 2020 04 25;25(4):776-790. Epub 2019 Jan 25.

Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.

Protein homeostasis is an emerging component of schizophrenia (SZ) pathophysiology. Proteomic alterations in SZ are well-documented and changes in transcript expression are frequently not associated with changes in protein expression in SZ brain. The underlying mechanism driving these changes remains unknown, though altered expression of ubiquitin proteasome system (UPS) components have implicated protein degradation. Previous studies have been limited to protein and transcript expression, however, and do not directly test the function of the proteasome. To address this gap in knowledge, we measured enzymatic activity associated with the proteasome (chymotrypsin-, trypsin-, and caspase-like) in the superior temporal gyrus (STG) of 25 SZ and 25 comparison subjects using flourogenic substrates. As localization regulates which cellular processes the proteasome contributes to, we measured proteasome activity and subunit expression in fractions enriched for nucleus, cytosolic, and membrane compartments. SZ subjects had decreased trypsin-like activity in total homogenate. This finding was specific to the nucleus-enriched fraction and was not associated with changes in proteasome subunit expression. Interestingly, both chymotrypsin-like activity and protein expression of 19S RP subunits, which facilitate ubiquitin-dependent degradation, were decreased in the cytosol-enriched fraction of SZ subjects. Intracellular compartment-specific proteasome dysfunction implicates dysregulation of protein expression both through altered ubiquitin-dependent degradation of cytosolic proteins and regulation of protein synthesis due to degradation of transcription factors and transcription machinery in the nucleus. Together, these findings implicate proteasome dysfunction in SZ, which likely has a broad impact on the proteomic landscape and cellular function in the pathophysiology of this illness.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41380-019-0359-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6658356PMC
April 2020

Abnormal ER quality control of neural GPI-anchored proteins via dysfunction in ER export processing in the frontal cortex of elderly subjects with schizophrenia.

Transl Psychiatry 2019 01 16;9(1). Epub 2019 Jan 16.

Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.

Abnormalities of posttranslational protein modifications (PTMs) have recently been implicated in the pathophysiology of schizophrenia. Glycosylphosphatidylinositols (GPIs) are a class of complex glycolipids, which anchor surface proteins and glycoproteins to the cell membrane. GPI attachment to proteins represents one of the most common PTMs and GPI-associated proteins (GPI-APs) facilitate many cell surface processes, including synapse development and maintenance. Mutations in the GPI processing pathway are associated with intellectual disability, emphasizing the potential role of GPI-APs in cognition and schizophrenia-associated cognitive dysfunction. As initial endoplasmic reticulum (ER)-associated protein processing is essential for GPI-AP function, we measured protein expression of molecules involved in attachment (GPAA1), modification (PGAP1), and ER export (Tmp21) of GPI-APs, in homogenates and in an ER enriched fraction derived from dorsolateral prefrontal cortex (DLPFC) of 15 matched pairs of schizophrenia and comparison subjects. In total homogenate we found a significant decrease in transmembrane protein 21 (Tmp21) and in the ER-enriched fraction we found reduced expression of post-GPI attachment protein (PGAP1). PGAP1 modifies GPI-anchors through inositol deacylation, allowing it to be recognized by Tmp21. Tmp21 is a component of the p24 complex that recognizes GPI-anchored proteins, senses the status of the GPI-anchor, and regulates incorporation into COPII vesicles for export to the Golgi apparatus. Together, these proteins are the molecular mechanisms underlying GPI-AP quality control and ER export. To investigate the potential consequences of a deficit in export and/or quality control, we measured cell membrane-associated expression of known GPI-APs that have been previously implicated in schizophrenia, including GPC1, NCAM, MDGA2, and EPHA1, using Triton X-114 phase separation. Additionally, we tested the sensitivity of those candidate proteins to phosphatidylinositol-specific phospholipase C (PI-PLC), an enzyme that cleaves GPI from GPI-APs. While we did not observe a difference in the amount of these GPI-APs in Triton X-114 phase separated membrane fractions, we found decreased NCAM and GPC1 within the PI-PLC sensitive fraction. These findings suggest dysregulation of ER-associated GPI-AP protein processing, with impacts on post-translational modifications of proteins previously implicated in schizophrenia such as NCAM and GPC1. These findings provide evidence for a deficit in ER protein processing pathways in this illness.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41398-018-0359-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6341114PMC
January 2019

Abnormal expression of ER quality control and ER associated degradation proteins in the dorsolateral prefrontal cortex in schizophrenia.

Schizophr Res 2018 07 26;197:484-491. Epub 2018 Feb 26.

Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.

Abnormalities in posttranslational protein modifications (PTMs) that regulate protein targeting, trafficking, synthesis, and function have been implicated in the pathophysiology of schizophrenia. The endoplasmic reticulum (ER) contains specialized machinery that facilitate protein synthesis, ER entry and exit, quality control, and post-translational processing, steps required for protein maturation. Dysregulation of these systems could represent potential mechanisms for abnormalities of neurotransmitter associated proteins in schizophrenia. We hypothesized that expression of ER processing pathways is dysregulated in schizophrenia. We characterized protein and complex expression of essential components from protein folding, ER quality control (ERQC), and ER associated degradation (ERAD) processes in the dorsolateral prefrontal cortex of 12 matched pairs of elderly schizophrenia and comparison subjects. We found increased expression of proteins associated with recognizing and modifying misfolded proteins, including UDP-glucose/glycoprotein glucosyltransferase 2 (UGGT2), ER degradation enhancing alpha-mannosidase like protein 2 (EDEM2), and synoviolin (SYVN1)/HRD1. As SYVN1/HRD1 is a component of the ubiquitin ligase HRD1-SEL1L complex that facilitates ERAD, we immunoprecipitated SEL1L and measured expression of other proteins in this complex. In schizophrenia, SYVN1/HRD1 and OS-9, ERAD promoters, have increased association with SEL1L, while XTP3-B, which can prevent ERAD of substrates, has decreased association. Abnormal expression of proteins associated with ERQC and ERAD suggests dysregulation in ER localized protein processing pathways in schizophrenia. Interestingly, the deficits we found are not in the protein processing machinery itself, but in proteins that recognize and target incompletely or misfolded proteins. These changes may reflect potential mechanisms of abnormal neurotransmitter associated protein expression previously observed in schizophrenia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.schres.2018.02.010DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6109614PMC
July 2018

Actin polymerization is reduced in the anterior cingulate cortex of elderly patients with schizophrenia.

Transl Psychiatry 2017 12 11;7(12):1278. Epub 2017 Dec 11.

Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, 1719 6th Avenue South, CIRC 593A, Birmingham, AL, 35294, USA.

Recent reports suggest abnormalities in the regulation of actin cytoskeletal dynamics in schizophrenia, despite consistent evidence for normal actin expression. We hypothesized that this may be explained by changes in the polymerization state of actin, rather than in total actin expression. To test this, we prepared filamentous actin (F-actin, polymeric) and globular actin (G-actin, monomeric) fractions from postmortem anterior cingulate cortex from 16 patients with schizophrenia and 14 comparison subjects. Additionally, binding of fluorescently-labeled phalloidin, a selectively F-actin-binding peptide, was measured in unfractionated samples from the same subjects. Western blot analysis of fractions revealed decreased F-actin, increased G-actin, and decreased ratios of F-actin/total actin and F-actin/G-actin in schizophrenia. Decreased phalloidin binding to F-actin in parallel experiments in the same subjects independently supports these findings. These results suggest a novel aspect of schizophrenia pathophysiology and are consistent with previous evidence of reduced dendritic spine density and altered synaptic plasticity in schizophrenia, both of which have been linked to cytoskeletal abnormalities.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41398-017-0045-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5802511PMC
December 2017

Abnormalities of signal transduction networks in chronic schizophrenia.

NPJ Schizophr 2017 Sep 12;3(1):30. Epub 2017 Sep 12.

Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA.

Schizophrenia is a serious neuropsychiatric disorder characterized by disruptions of brain cell metabolism, microstructure, and neurotransmission. All of these processes require coordination of multiple kinase-mediated signaling events. We hypothesize that imbalances in kinase activity propagate through an interconnected network of intracellular signaling with potential to simultaneously contribute to many or all of the observed deficits in schizophrenia. We established a workflow distinguishing schizophrenia-altered kinases in anterior cingulate cortex using a previously published kinome array data set. We compared schizophrenia-altered kinases to haloperidol-altered kinases, and identified systems, functions, and regulators predicted using pathway analyses. We used kinase inhibitors with the kinome array to test hypotheses about imbalance in signaling and conducted preliminary studies of kinase proteins, phosphoproteins, and activity for kinases of interest. We investigated schizophrenia-associated single nucleotide polymorphisms in one of these kinases, AKT, for genotype-dependent changes in AKT protein or activity. Kinome analyses identified new kinases as well as some previously implicated in schizophrenia. These results were not explained by chronic antipsychotic treatment. Kinases identified in our analyses aligned with cytoskeletal arrangement and molecular trafficking. Of the kinases we investigated further, AKT and (unexpectedly) JNK, showed the most dysregulation in the anterior cingulate cortex of schizophrenia subjects. Changes in kinase activity did not correspond to protein or phosphoprotein levels. We also show that AKT single nucleotide polymorphism rs1130214, previously associated with schizophrenia, influenced enzyme activity but not protein or phosphoprotein levels. Our data indicate subtle changes in kinase activity and regulation across an interlinked kinase network, suggesting signaling imbalances underlie the core symptoms of schizophrenia.

Disease Mechanisms: A SIGNALING IMBALANCE: A study by US scientists indicates that changes in the activity of key signaling proteins may underlie core symptoms of schizophrenia. Protein kinases mediate the activation of intracellular signaling events and analyses of the kinome, the complete set of protein kinases encoded in the genome, previously revealed significant changes in phosphorylation patterns in postmortem brain tissue from patients with schizophrenia. Based on these findings, Jennifer McGuire at the University of Cincinnati and colleagues investigated the upstream regulation of these proteins. They identified both established and novel proteins associated with schizophrenia in the anterior cingulate cortex, with JNK and AKT activity being the most disrupted in schizophrenia patients. Their findings highlight how subtle changes in the activity of a small number of signaling proteins can propagate and have major consequences for mental health.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41537-017-0032-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5595970PMC
September 2017

Pre-clinical Medical Students as the Primary Longitudinal Provider of Psychiatric Care in the Outpatient Setting: A Novel Training Model.

Acad Psychiatry 2017 08 31;41(4):538-541. Epub 2017 Jan 31.

The University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s40596-016-0659-zDOI Listing
August 2017

Altered fucosyltransferase expression in the superior temporal gyrus of elderly patients with schizophrenia.

Schizophr Res 2017 04 20;182:66-73. Epub 2016 Oct 20.

Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.

Glycosylation is a post-translational modification that is an essential element in cell signaling and neurodevelopmental pathway regulation. Glycan attachment can influence the tertiary structure and molecular interactions of glycosylated substrates, adding an additional layer of regulatory complexity to functional mechanisms underlying central cell biological processes. One type of enzyme-mediated glycan attachment, fucosylation, can mediate glycoprotein and glycolipid cell surface expression, trafficking, secretion, and quality control to modulate a variety of inter- and intracellular signaling cascades. Building on prior reports of glycosylation abnormalities and evidence of dysregulated glycosylation enzyme expression in schizophrenia, we examined the protein expression of 5 key fucose-modifying enzymes: GDP-fucose:protein O-fucosyltransferase 1 (POFUT1), GDP-fucose:protein O-fucosyltransferase 2 (POFUT2), fucosyltransferase 8 (FUT8), fucosyltransferase 11 (FUT11), and plasma α-l-fucosidase (FUCA2) in postmortem superior temporal gyrus of schizophrenia (N=16) and comparison (N=14) subjects. We also used the fucose binding protein, Aleuria aurantia lectin (AAL), to assess α-1,6-fucosylated N-glycoprotein abundance in the same subjects. In schizophrenia, we found increased expression of POFUT2, a fucosyltransferase uniquely responsible for O-fucosylation of thrombospondin-like repeat domains that is involved in a non-canonical endoplasmic reticulum quality control pathway. We also found decreased expression of FUT8 in schizophrenia. Given that FUT8 is the only α-1,6-fucosyltransferase expressed in mammals, the concurrent decrease in AAL binding in schizophrenia, particularly evident for N-glycoproteins in the ~52-58kDa and ~60-70kDa molecular mass ranges, likely reflects a consequence of abnormal FUT8 expression in the disorder. Dysregulated FUT8 and POFUT2 expression could potentially explain a variety of molecular abnormalities in schizophrenia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.schres.2016.10.024DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5376218PMC
April 2017

Decreased protein S-palmitoylation in dorsolateral prefrontal cortex in schizophrenia.

Schizophr Res 2016 11 11;177(1-3):78-87. Epub 2016 Feb 11.

Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294-0021, USA.

Recent reports suggest abnormalities of neurotransmitter receptor trafficking, targeting, dendritic localization, recycling, and degradation in the brain in schizophrenia. We hypothesized that a potential explanation for these findings may be abnormal posttranslational modifications that influence intracellular targeting and trafficking of proteins between subcellular compartments. Dysregulation of protein palmitoylation is a strong candidate for such a process. S-palmitoylation is a reversible thioesterification of palmitoyl-groups to cysteine residues that can regulate trafficking and targeting of intracellular proteins. Using a biotin switch assay to study S-palmitoylation of proteins in human postmortem brain, we identified a pattern of palmitoylated proteins that cluster into 17 bands of discrete molecular masses, including numerous proteins associated with receptor signal transduction. Using mass spectrometry, we identified 219 palmitoylated proteins in human frontal cortex, and individually validated palmitoylation status of a subset of these proteins. Next, we assayed protein palmitoylation in dorsolateral prefrontal cortex from 16 schizophrenia patients and paired comparison subjects. S-palmitoylation was significantly reduced for proteins in most of the 17 schizophrenia bands. In rats chronically treated with haloperidol, the same pattern of palmitoylation was observed but the extent of palmitoylation was unchanged, suggesting that the diminution in protein palmitoylation in schizophrenia is not due to chronic antipsychotic treatment. These results indicate there are changes in the extent of S-palmitoylation of many proteins in the frontal cortex in schizophrenia. Given the roles of this posttranslational modification, these data suggest a potential mechanism reconciling previous observations of abnormal intracellular targeting and trafficking of neurotransmitter receptors in this illness.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.schres.2016.01.054DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4981568PMC
November 2016

Decreased expression of cortactin in the schizophrenia brain.

Neuroreport 2016 Feb;27(3):145-50

aDepartment of Psychiatry and Behavioral Neurobiology bUniversity Honors Program, University of Alabama at Birmingham, Birmingham, Alabama cDepartment of Psychiatry, Mount Sinai School of Medicine, New York, New York, USA.

Schizophrenia is a severe psychiatric disorder that is characterized by a wide array of symptoms and a complex neuropathology. A well-characterized neurobiological feature of schizophrenia is abnormal synaptic plasticity, although the mechanisms underlying this are not fully understood. Numerous studies have demonstrated a link between proper functioning of the cytoskeleton and synaptic plasticity. The actin-related protein-2/3 (Arp2/3) complex is responsible for the nucleation of new actin filaments and elongation of existing actin filaments and is thus crucial to cytoskeletal dynamics, especially actin polymerization and organization. To determine whether the Arp2/3 complex is abnormally expressed in schizophrenia, we measured the protein expression of Arp2 and Arp3, as well as Arp2/3 complex binding partners and associated proteins including cortactin, neuronal-Wiskott-Aldrich syndrome protein (WASP), WASP-family verprolin homologous protein 1 (WAVE1), and Abelson interactor 1 (Abi1) in the superior temporal gyrus of paired schizophrenia and comparison participants. No changes were found in Arp2, Arp3, neuronal-WASP, WAVE1, or Abi1. However, all three isoforms of cortactin were decreased in schizophrenia. Specifically, the 62 kDa isoform was decreased by 43%; the 71 kDa isoform was decreased by 32%; and the 58 kDa isoform was decreased by 35%. Cortactin regulates branching of filamentous actin through its binding and activation of the Arp2/3 complex, and it is thus critical to the formation of stable actin networks. These findings contribute to a growing body of evidence implicating altered cytoskeletal dynamics in schizophrenia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/WNR.0000000000000514DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4733612PMC
February 2016

Cortical PGC-1α-Dependent Transcripts Are Reduced in Postmortem Tissue From Patients With Schizophrenia.

Schizophr Bull 2016 07 17;42(4):1009-17. Epub 2015 Dec 17.

Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL;

The transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC-1α) has been linked to multiple neurological and psychiatric disorders including schizophrenia, but its involvement in the pathophysiology of these disorders is unclear. Experiments in mice have revealed a set of developmentally-regulated cortical PGC-1α-dependent transcripts involved in calcium buffering (parvalbumin, PV), synchronous neurotransmitter release (synaptotagmin 2, Syt2; complexin 1, Cplx1) and axonal integrity (neurofilamaent heavy chain, Nefh). We measured the mRNA expression of PGC-1α and these transcripts in postmortem cortical tissue from control and schizophrenia patients and found a reduction in PGC-1α-dependent transcripts without a change in PGC-1α. While control subjects with high PGC-1α expression exhibited high PV and Nefh expression, schizophrenia subjects with high PGC-1α expression did not, suggesting dissociation between PGC-1α expression and these targets in schizophrenia. Unbiased analyses of the promoter regions for PGC-1α-dependent transcripts revealed enrichment of binding sites for the PGC-1α-interacting transcription factor nuclear respiratory factor 1 (NRF-1). NRF-1 mRNA expression was reduced in schizophrenia, and its transcript levels predicted that of PGC-1α-dependent targets in schizophrenia. Interestingly, the positive correlation between PGC-1α and PV, Syt2, or Cplx1 expression was lost in schizophrenia patients with low NRF-1 expression, suggesting that NRF-1 is a critical predictor of these genes in disease. These data suggest that schizophrenia involves a disruption in PGC-1α and/or NRF-1-associated transcriptional programs in the cortex and that approaches to enhance the activity of PGC-1α or transcriptional regulators like NRF-1 should be considered with the goal of restoring normal gene programs and improving cortical function.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/schbul/sbv184DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4903048PMC
July 2016

Protein Expression of Proteasome Subunits in Elderly Patients with Schizophrenia.

Neuropsychopharmacology 2016 Feb 23;41(3):896-905. Epub 2015 Jul 23.

Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.

The ubiquitin proteasome system (UPS) is a major regulator of protein processing, trafficking, and degradation. While protein ubiquitination is utilized for many cellular processes, one major function of this system is to target proteins to the proteasome for degradation. In schizophrenia, studies have found UPS transcript abnormalities in both blood and brain, and we have previously reported decreased protein expression of ubiquitin-associated proteins in brain. To test whether the proteasome is similarly dysregulated, we measured the protein expression of proteasome catalytic subunits as well as essential subunits from proteasome regulatory complexes in 14 pair-matched schizophrenia and comparison subjects in superior temporal cortex. We found decreased expression of Rpt1, Rpt3, and Rpt6, subunits of the 19S regulatory particle essential for ubiquitin-dependent degradation by the proteasome. Additionally, the α subunit of the 11S αβ regulatory particle, which enhances proteasomal degradation of small peptides and unfolded proteins, was also decreased. Haloperidol-treated rats did not have altered expression of these subunits, suggesting the changes we observed in schizophrenia are likely not due to chronic antipsychotic treatment. Interestingly, expression of the catalytic subunits of both the standard and immunoproteasome were unchanged, suggesting the abnormalities we observed may be specific to the complexed state of the proteasome. Aging has significant effects on the proteasome, and several subunits (20S β2, Rpn10, Rpn13, 11Sβ, and 11Sγ) were significantly correlated with subject age. These data provide further evidence of dysfunction of the ubiquitin-proteasome system in schizophrenia, and suggest that altered proteasome activity may be associated with the pathophysiology of this illness.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/npp.2015.219DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4707836PMC
February 2016

Abnormal N-acetylglucosaminyltransferase expression in prefrontal cortex in schizophrenia.

Schizophr Res 2015 Aug 20;166(1-3):219-24. Epub 2015 Jun 20.

Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL USA.

Changes in the extent of the posttranslational modification glycosylation have been previously reported in several brain regions in schizophrenia. Quality control within the endoplasmic reticulum and Golgi, branching of glycans, intracellular trafficking and targeting, protein-protein interactions, and endocytosis are processes regulated by both N-linked and O-linked glycosylation. Previous studies in schizophrenia have found altered glycan biosynthesis and abnormal glycan levels in cerebrospinal fluid (CSF) and plasma, as well as altered expression in frontal cortex of glycosyltransferase transcripts encoding proteins associated with both N- and O-linked glycosylation. The N-acetylglucosaminyltransferases (GlcNAcTs) are glycosylating enzymes that play a key role in adding N-acetylglucosamine (GlcNAc) to substrates to facilitate their proper trafficking, intracellular targeting, and cellular function. Given previous results indicating abnormal glycosylation in schizophrenia, we hypothesized that these GlcNAcTs may be abnormally expressed in this illness. We measured protein expression of nine distinct GlcNAcTs by Western blot analysis in postmortem samples of dorsolateral prefrontal cortex (DLPFC) from twelve pairs of elderly patients with schizophrenia and comparison subjects. We found decreased protein expression of UDP-GlcNAc:BetaGal Beta-1,3 GlcNAcT 8 (B3GNT8) and mannosyl (alpha-1,3-)-glycoprotein beta-1,4 GlcNAcT (MGAT4A) expression in schizophrenia. These data provide further evidence that glycosylation is dysregulated in schizophrenia, and suggest a potential mechanism associated with alterations in protein function, trafficking, and intracellular targeting in this illness.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.schres.2015.06.002DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4512847PMC
August 2015

Increased G protein-coupled receptor kinase (GRK) expression in the anterior cingulate cortex in schizophrenia.

Schizophr Res 2014 Oct 19;159(1):130-5. Epub 2014 Aug 19.

Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, CARE 5830, 231 Albert Sabin Way, Cincinnati, OH 45267-0583, USA. Electronic address:

Background: Current pharmacological treatments for schizophrenia target G protein-coupled receptors (GPCRs), including dopamine receptors. Ligand-bound GPCRs are regulated by a family of G protein-coupled receptor kinases (GRKs), members of which uncouple the receptor from heterotrimeric G proteins, desensitize the receptor, and induce receptor internalization via the arrestin family of scaffolding and signaling molecules. GRKs initiate the activation of downstream signaling pathways, can regulate receptors and signaling molecules independent of GPCR phosphorylation, and modulate epigenetic regulators like histone deacetylases (HDACs). We hypothesize that the expression of GRK proteins is altered in schizophrenia, consistent with previous findings of alterations upstream and downstream from this family of molecules that facilitate intracellular signaling processes.

Methods: In this study, we measured protein expression via Western blot analysis for GRKs 2, 3, 5, and 6 in the anterior cingulate cortex of patients with schizophrenia (n=36) and a comparison group (n=33). To control for antipsychotic treatment, we measured these same targets in haloperidol-treated vs. untreated rats (n=10 for both).

Results: We found increased levels of GRK5 in schizophrenia. No changes were detected in GRK protein expression in rats treated with haloperidol decanoate for 9 months.

Conclusion: These data suggest that increased GRK5 expression may contribute to the pathophysiology of schizophrenia via abnormal regulation of the cytoskeleton, endocytosis, signaling, GPCRs, and histone modification.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.schres.2014.07.040DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4177355PMC
October 2014

Altered serine/threonine kinase activity in schizophrenia.

Brain Res 2014 Jun 26;1568:42-54. Epub 2014 Apr 26.

Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA. Electronic address:

Converging evidence implicates alterations in multiple signaling pathways in the etiology of schizophrenia. Previously, these studies were limited to the analysis of one or a few phosphoproteins at a time. Here, we use a novel kinase array platform to simultaneously investigate the convergence of multiple signaling cascades implicated in schizophrenia. This technology uses consensus peptide substrates to assess activity levels of a large number (>100) of serine/threonine protein kinases. 19 peptide substrates were differentially phosphorylated (>15% change) in the frontal cortex in schizophrenia. These peptide substrates were examined using Ingenuity Pathway Analysis to group them according to the functions and to identify processes most likely affected in schizophrenia. Pathway analysis placed 14 of the 19 peptides into cellular homeostatic pathways, 10 into pathways governing cytoskeletal organization, and 8 into pathways governing ion homeostasis. These data are the first to simultaneously investigate comprehensive changes in signaling cascades in a severe psychiatric disorder. The examination of kinase activity in signaling pathways may facilitate the identification of novel substrates for drug discovery and the development of safer and more effective pharmacological treatment for schizophrenia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2014.04.029DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4096904PMC
June 2014

Evolutionarily conserved pattern of AMPA receptor subunit glycosylation in Mammalian frontal cortex.

PLoS One 2014 8;9(4):e94255. Epub 2014 Apr 8.

Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America.

Protein glycosylation may contribute to the evolution of mammalian brain complexity by adapting excitatory neurotransmission in response to environmental and social cues. Balanced excitatory synaptic transmission is primarily mediated by glutamatergic neurotransmission. Previous studies have found that subunits of the AMPA subtype of glutamate receptor are N-glycosylated, which may play a critical role in AMPA receptor trafficking and function at the cell membrane. Studies have predominantly used rodent models to address altered glycosylation in human pathological conditions. Given the rate of mammalian brain evolution and the predicted rate of change in the brain-specific glycoproteome, we asked if there are species-specific changes in glycoprotein expression, focusing on the AMPA receptor. N-glycosylation of AMPA receptor subunits was investigated in rat (Rattus norvegicus), tree shrew (Tupaia glis belangeri), macaque (Macaca nemestrina), and human frontal cortex tissue using a combination of enzymatic deglycosylation and Western blot analysis, as well as lectin binding assays. We found that two AMPA receptor subunits, GluA2 and GluA4, are sensitive to deglycosylation with Endo H and PNGase F. When we enriched for glycosylated proteins using lectin binding assays, we found that all four AMPA receptor subunits are glycosylated, and were predominantly recognized by lectins that bind to glucose or mannose, N-acetylglucosamine (GlcNAc), or 1-6αfucose. We found differences in glycosylation between different subunits, as well as modest differences in glycosylation of homologous subunits between different species.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0094255PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3979850PMC
December 2014

Alterations of the myristoylated, alanine-rich C kinase substrate (MARCKS) in prefrontal cortex in schizophrenia.

Schizophr Res 2014 Apr 22;154(1-3):36-41. Epub 2014 Feb 22.

Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.

Abnormal synaptic plasticity has been implicated in the cognitive deficits seen in schizophrenia, where alterations have been found in neurotransmission, signaling and dendritic dynamics. Rapid rearrangement of the actin cytoskeleton is critical for plasticity and abnormalities of molecular regulators of this process are candidates for understanding mechanisms underlying these changes in schizophrenia. The myristoylated, alanine-rich C-kinase substrate (MARCKS) is crucial for many roles associated with synaptic plasticity, including facilitation of neurotransmission, dendritic branching and in turn cognitive function. Accordingly, we hypothesized that this protein is abnormally expressed or regulated in schizophrenia. We measured protein expression of MARCKS by Western blot analysis in postmortem samples of dorsolateral prefrontal cortex (DLPFC) from elderly schizophrenia patients (N=16) and a comparison group (N=20). We also assayed phosphorylated-MARCKS (pMARCKS), given the role of phosphorylation in reversing membrane association by MARCKS. We found decreased expression of both MARCKS and pMARCKS in schizophrenia. Altered myristoylation may be a mechanism that explains this down-regulation of MARCKS, so we also assayed expression of the two isoforms of the key myristoylation enzyme, NMT, and an enzymatic inhibitor of this enzyme, NMT-inhibitor protein (NIP71) by Western blotting in these same subjects. Expression did not change between groups for these proteins, suggesting a mechanism other than myristoylation is responsible for decreased MARCKS expression in schizophrenia. These data suggest a potential mechanism underlying aspects of altered synaptic plasticity observed in schizophrenia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.schres.2014.02.003DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3999918PMC
April 2014

Abnormal partitioning of hexokinase 1 suggests disruption of a glutamate transport protein complex in schizophrenia.

Schizophr Res 2014 Apr 21;154(1-3):1-13. Epub 2014 Feb 21.

Department of Psychiatry, University of Cincinnati, Cincinnati, OH, USA. Electronic address:

Excitatory amino acid transporter 2 (EAAT2) belongs to a family of Na(+) dependent glutamate transporters that maintain a low synaptic concentration of glutamate by removing glutamate from the synaptic cleft into astroglia and neurons. EAAT2 activity depends on Na(+) and K(+) gradients generated by Na(+)/K(+) ATPase and ATP. Hexokinase 1 (HK1), an initial enzyme of glycolysis, binds to mitochondrial outer membrane where it couples cytosolic glycolysis to mitochondrial oxidative phosphorylation, producing ATP utilized by the EAAT2/Na(+)/K(+) ATPase protein complex to facilitate glutamate reuptake. In this study, we hypothesized that the protein complex formed by EAAT2, Na(+)/K(+) ATPase and mitochondrial proteins in human postmortem prefrontal cortex may be disrupted, leading to abnormal glutamate transmission in schizophrenia. We first determined that EAAT2, Na(+)/K(+) ATPase, HK1 and aconitase were found in both EAAT2 and Na(+)/K(+) ATPase interactomes by immunoisolation and mass spectrometry in human postmortem prefrontal cortex. Next, we measured levels of glutamate transport complex proteins in subcellular fractions in the dorsolateral prefrontal cortex and found increases in the EAAT2B isoform of EAAT2 in a fraction containing extrasynaptic membranes and increased aconitase 1 in a mitochondrial fraction. Finally, an increased ratio of HK1 protein in the extrasynaptic membrane/mitochondrial fraction was found in subjects with schizophrenia, suggesting that HK1 protein is abnormally partitioned in this illness. Our findings indicate that the integrity of the glutamate transport protein complex may be disrupted, leading to decreased perisynaptic buffering and reuptake of glutamate, as well as impaired energy metabolism in schizophrenia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.schres.2014.01.028DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4151500PMC
April 2014

Postmortem brain: an underutilized substrate for studying severe mental illness.

Neuropsychopharmacology 2014 Jan 4;39(1):65-87. Epub 2013 Oct 4.

Department of Psychiatry, University of Cincinnati, Cincinnati, OH, USA.

We propose that postmortem tissue is an underutilized substrate that may be used to translate genetic and/or preclinical studies, particularly for neuropsychiatric illnesses with complex etiologies. Postmortem brain tissues from subjects with schizophrenia have been extensively studied, and thus serve as a useful vehicle for illustrating the challenges associated with this biological substrate. Schizophrenia is likely caused by a combination of genetic risk and environmental factors that combine to create a disease phenotype that is typically not apparent until late adolescence. The complexity of this illness creates challenges for hypothesis testing aimed at understanding the pathophysiology of the illness, as postmortem brain tissues collected from individuals with schizophrenia reflect neuroplastic changes from a lifetime of severe mental illness, as well as treatment with antipsychotic medications. While there are significant challenges with studying postmortem brain, such as the postmortem interval, it confers a translational element that is difficult to recapitulate in animal models. On the other hand, data derived from animal models typically provide specific mechanistic and behavioral measures that cannot be generated using human subjects. Convergence of these two approaches has led to important insights for understanding molecular deficits and their causes in this illness. In this review, we discuss the problem of schizophrenia, review the common challenges related to postmortem studies, discuss the application of biochemical approaches to this substrate, and present examples of postmortem schizophrenia studies that illustrate the role of the postmortem approach for generating important new leads for understanding the pathophysiology of severe mental illness.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/npp.2013.239DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3857666PMC
January 2014

N-Glycosylation of GABAA receptor subunits is altered in Schizophrenia.

Neuropsychopharmacology 2014 Feb 6;39(3):528-37. Epub 2013 Aug 6.

Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.

The molecular mechanisms of schizophrenia have been under investigation for decades; however, the exact causes of this debilitating neuropsychiatric disorder are still unknown. Previous studies have identified multiple affected neurotransmitter systems, brain regions, and cell types, each making a unique contribution to symptom presentation and pathophysiology. Numerous studies have identified gene and protein expression changes in schizophrenia, but the role of post-translational modifications, specifically N-glycosylation, has only recently become a target of investigation. N-glycosylation of molecules associated with glutamatergic neurotransmission is disrupted in schizophrenia, but it was unknown if these alterations are exclusive to the glutamatergic system or due to a more generalized deficit.In normal human cortex, we found evidence for N-glycosylation of the α1, β1, and β2 γ-aminobutyric type A receptor (GABAAR) subunits using deglycosylation protein shift assays. This was confirmed with lectin affinity assays that revealed glycan attachment on the α1, α4, and β1-3 GABAAR subunits. Examining GABAAR subunit N-glycosylation in matched pairs of schizophrenia (N=14) and comparison (N=14) of superior temporal gyrus revealed a smaller molecular mass of immature N-glycans on the α1 subunit, more immature N-glycosylation of the 49-kDa β1 subunit isoform, and altered total N-glycosylation of the β2 GABAAR subunit in schizophrenia. Measures of altered N-glycosylation of the β1 and β2 subunits were confounded by an increased apparent molecular mass of all β1 and β2 subunit isoforms in schizophrenia. Although N-glycosylation of α1, β1, and β2 were all changed in schizophrenia, the concentrations of GABAAR subunits themselves were unchanged. These findings suggest that disruptions of N-glycosylation in schizophrenia are not exclusive to glutamate and may indicate a potential disruption of a central cell signaling process in this disorder.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/npp.2013.190DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3895232PMC
February 2014

N-linked glycosylation of cortical N-methyl-D-aspartate and kainate receptor subunits in schizophrenia.

Neuroreport 2013 Aug;24(12):688-91

Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0017, USA.

Dysfunctional glutamate neurotransmission has been implicated in the pathophysiology of schizophrenia. Abnormal expressions in schizophrenia of ionotropic glutamate receptors (iGluRs) and the proteins that regulate their trafficking have been found to be region and subunit specific in brain, suggesting that abnormal trafficking of iGluRs may contribute toward altered glutamatergic neurotransmission. The post-translational modification N-glycosylation of iGluR subunits can be used as a proxy for their intracellular localization. Receptor complexes assemble in the lumen of the endoplasmic reticulum, where N-glycosylation begins with the addition of N-linked oligomannose glycans, and is subsequently trimmed and replaced by more elaborate glycans while trafficking through the Golgi apparatus. Previously, we found abnormalities in N-glycosylation of the GluR2 AMPA receptor subunit in schizophrenia. Here, we investigated N-glycosylation of N-methyl-D-aspartate and kainate (KA) receptor subunits in the dorsolateral prefrontal cortex from patients with schizophrenia and a comparison group. We used enzymatic deglycosylation with two glycosidases: endoglycosidase H (Endo H), which removes immature high mannose-containing sugars, and peptide-N-glycosidase F (PNGase F), which removes all N-linked sugars. The NR1, NR2A, NR2B, GluR6, and KA2 subunits were all sensitive to treatment with Endo H and PNGase F. The GluR6 KA receptor subunit was significantly more sensitive to Endo H-mediated deglycosylation in schizophrenia, suggesting a larger molecular mass of N-linked high mannose and/or hybrid sugars on GluR6. This finding, taken with our previous work, suggests that a cellular mechanism underlying abnormal glutamate neurotransmission in schizophrenia may involve abnormal trafficking of both AMPA and KA receptors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/WNR.0b013e328363bd8aDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3919653PMC
August 2013