Publications by authors named "Jahanzeb Hassan"

2 Publications

  • Page 1 of 1

Impact of Bi Doping into Boron Nitride Nanosheets on Electronic and Optical Properties Using Theoretical Calculations and Experiments.

Nanoscale Res Lett 2021 May 12;16(1):82. Epub 2021 May 12.

Department of Physics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa, 31982, Saudi Arabia.

In the present work, boron nitride (BN) nanosheets were prepared through bulk BN liquid phase exfoliation while various wt. ratios (2.5, 5, 7.5 and 10) of bismuth (Bi) were incorporated as dopant using hydrothermal technique. Our findings exhibit that the optical investigation showed absorption spectra in near UV region. Density functional theory calculations indicate that Bi doping has led to various modifications in the electronic structures of BN nanosheet by inducing new localized gap states around the Fermi level. It was found that bandgap energy decrease with the increase of Bi dopant concentrations. Therefore, in analysis of the calculated absorption spectra, a redshift has been observed in the absorption edges, which is consistent with the experimental observation. Additionally, host and Bi-doped BN nanosheets were assessed for their catalytic and antibacterial potential. Catalytic activity of doped free and doped BN nanosheets was evaluated by assessing their performance in dye reduction/degradation process. Bactericidal activity of Bi-doped BN nanosheets resulted in enhanced efficiency measured at 0-33.8% and 43.4-60% against S. aureus and 0-38.8% and 50.5-85.8% against E. coli, respectively. Furthermore, In silico molecular docking predictions were in good agreement with in-vitro bactericidal activity. Bi-doped BN nanosheets showed good binding score against DHFR of E. coli (- 11.971 kcal/mol) and S. aureus (- 8.526 kcal/mol) while binding score for DNA gyrase from E. coli (- 6.782 kcal/mol) and S. aureus (- 7.819 kcal/mol) suggested these selected enzymes as possible target.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s11671-021-03542-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8116421PMC
May 2021

Silver Decorated 2D Nanosheets of GO and MoS2 serve as Nanocatalyst for Water Treatment and Antimicrobial Applications as ascertained with Molecular Docking Evaluation.

Nanotechnology 2021 Feb 8. Epub 2021 Feb 8.

Physics, Government College University Lahore, Katchery Road, Lahore, Punjab, 54000, PAKISTAN.

Two-dimensional (2D) nanosheets doped with silver nanoparticles (AgNPs) have found significant antibacterial applications in industry. In this work, synthesis of graphene oxide (GO) and reduced graphene oxide (rGO) was realized through a modified Hummers route. Different concentrations (5 & 10 wt.%) of Ag were doped in MoS2 and rGO using a hydrothermal approach. Synthesized Ag-MoS2 and Ag-rGO were evaluated through XRD that confirmed the hexagonal structure of MoS2 along with the transformation of GO to Ag-rGO as indicated by a shift in XRD peaks. FTIR confirmed the presence of Mo-O bonding vibrations, and S=O functional groups present in the prepared samples. Morphological information of GO and formation of MoS2 nanopetals were verified through FESEM, while spherical morphology, interlayer spacing, and homogeneous distribution of AgNPs were scrutinized through HR-TEM. Raman analysis was employed to probe any evidence regarding defect densities of GO. Optical properties of GO, MoS2, Ag-rGO, and Ag-MoS2 were visualized through UV-Vis & PL spectroscopy. Prepared products were employed as nanocatalysts to purify industrial wastewater, while degradation of undoped and doped samples was inspected using UV-Vis spectroscopy. Experimental results revealed that the photocatalytic response of Ag-rGO and Ag-MoS2 enhanced upon doping. Besides, the nanocatalyst (Ag-MoS2 & Ag-rGO) exhibited an excellent antibacterial activity towards S. aureus gram positive (G+) and E. coli gram negative (G-). To rationalize biocidal mechanism of Ag-doped MoS2 NPs and Ag-rGO, in silico molecular docking study was employed for two enzymes (i.e. β-lactamase & ddlB) from cell wall biosynthetic pathway and FabI from fatty acid biosynthetic pathway belonging to S. aureus. The present study provides evidence for the development of cost-effective and environmental-friendly products that could receive favorable recommendation for use in industrial and biomedical applications.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/abe43cDOI Listing
February 2021