Stem Cell Reports 2017 11 19;9(5):1488-1500. Epub 2017 Oct 19.
Department of Medicine, Stony Brook University, Stony Brook, NY, USA; Department of Medicine and Stony Brook Cancer Center, Stony Brook University, HSC T15-023, Stony Brook, NY 11794, USA; Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY, USA; Department of Dermatology, Stony Brook University, Stony Brook, NY, USA. Electronic address:
Ceramides and their metabolites are important for the homeostasis of the epidermis, but much remains unknown about the roles of specific pathways of ceramide metabolism in skin biology. With a mouse model deficient in the alkaline ceramidase (Acer1) gene, we demonstrate that ACER1 plays a key role in the homeostasis of the epidermis and its appendages by controlling the metabolism of ceramides. Loss of Acer1 elevated the levels of various ceramides and sphingoid bases in the skin and caused progressive hair loss in mice. Mechanistic studies revealed that loss of Acer1 widened follicular infundibulum and caused progressive loss of hair follicle stem cells (HFSCs) due to reduced survival and stemness. These results suggest that ACER1 plays a key role in maintaining the homeostasis of HFSCs, and thereby the hair follicle structure and function, by regulating the metabolism of ceramides in the epidermis.