Publications by authors named "Jacqueline Vekich"

2 Publications

  • Page 1 of 1

Therapeutic Effects of FGF23 c-tail Fc in a Murine Preclinical Model of X-Linked Hypophosphatemia Via the Selective Modulation of Phosphate Reabsorption.

J Bone Miner Res 2017 Oct 25;32(10):2062-2073. Epub 2017 Aug 25.

Center for Therapeutic Innovation, Pfizer, New York, NY, USA.

Fibroblast growth factor 23 (FGF23) is the causative factor of X-linked hypophosphatemia (XLH), a genetic disorder effecting 1:20,000 that is characterized by excessive phosphate excretion, elevated FGF23 levels and a rickets/osteomalacia phenotype. FGF23 inhibits phosphate reabsorption and suppresses 1α,25-dihydroxyvitamin D (1,25D) biosynthesis, analytes that differentially contribute to bone integrity and deleterious soft-tissue mineralization. As inhibition of ligand broadly modulates downstream targets, balancing efficacy and unwanted toxicity is difficult when targeting the FGF23 pathway. We demonstrate that a FGF23 c-tail-Fc fusion molecule selectively modulates the phosphate pathway in vivo by competitive antagonism of FGF23 binding to the FGFR/α klotho receptor complex. Repeated injection of FGF23 c-tail Fc in Hyp mice, a preclinical model of XLH, increases cell surface abundance of kidney NaPi transporters, normalizes phosphate excretion, and significantly improves bone architecture in the absence of soft-tissue mineralization. Repeated injection does not modulate either 1,25D or calcium in a physiologically relevant manner in either a wild-type or disease setting. These data suggest that bone integrity can be improved in models of XLH via the exclusive modulation of phosphate. We posit that the selective modulation of the phosphate pathway will increase the window between efficacy and safety risks, allowing increased efficacy to be achieved in the treatment of this chronic disease. © 2017 American Society for Bone and Mineral Research.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbmr.3197DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5816679PMC
October 2017

Nuclear localization of cell-penetrating peptides is dependent on endocytosis rather than cytosolic delivery in CHO cells.

Mol Pharm 2009 Mar-Apr;6(2):337-44

Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, PSC 404B, Los Angeles, California 90033-1039, USA.

The nuclear localization of various cell penetrating peptides (CPPs), including Tat [47-57], YG(R)9, YG(K)9, and model amphipathic peptide (MAP), was examined and correlated with the endocytosis and cytosolic transfer efficiency in CHO cells. The results showed that the internalization of the amphipathic peptide, MAP, was much higher than that of the other cationic CPPs tested. During subcellular fractionation analysis, MAP was only found in the vesicular fraction and was not detectable in the cytosol, similar to the intracellular localization of YG(K)9 as previously determined. This localization pattern differs greatly from the cationic CPPs oligoarginine and Tat, which were previously found primarily in the cytosol. Both quantitative and qualitative analysis of MAP showed high nuclear localization, with staining in perinuclear vesicles. On the other hand, YG(R)9 was found to be excluded from the nucleus. Lysosomotropic amines altered the nuclear localization of the CPPs tested, and the change was correlated with the release of degradation products from the treated cells. These results suggest that highly endocytosed CPPs such as MAP may be more suitable for nuclear drug delivery applications than peptides such as Tat and YG(R)9 that are efficiently delivered to the cytosol.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/mp800239pDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3638978PMC
September 2009
-->