Publications by authors named "Jacqueline Busscher-Lange"

13 Publications

  • Page 1 of 1

A temperature regime that disrupts clock-controlled starch mobilization induces transient carbohydrate starvation, resulting in compact growth.

J Exp Bot 2021 Feb 22. Epub 2021 Feb 22.

Laboratory of Plant Physiology, Wageningen University & Research, Droevendaalsesteeg, Wageningen, The Netherlands.

In nature plants are usually subjected to a light/temperature regime of warm day and cold night (referred to as +DIF). Compared to growth under +DIF, Arabidopsis plants show compact growth under the same photoperiod, but with an inverse temperature regime (cold day and warm night: -DIF). Here we show that -DIF differentially affects the phase and amplitude of core clock gene expression. Under -DIF the phase of the morning clock gene CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) is delayed, similar to that of plants grown on low sucrose. Indeed, under -DIF carbohydrate (CHO) starvation marker genes are specifically upregulated at the End of the Night (EN) in Arabidopsis rosettes. However, only in inner-rosette tissue (small sink leaves and petioles of older leaves) sucrose levels are lower under -DIF compared to under +DIF, suggesting that sucrose in source leaf blades is not sensed for CHO status and that sucrose transport from source to sink may be impaired at EN. CHO-starvation under -DIF correlated with increased starch breakdown during the night and decreased starch accumulation during the day. Moreover, we demonstrate that different ways of inducing CHO-starvation all link to reduced growth of sink leaves. Practical implications for control of plant growth in horticulture are discussed.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/erab075DOI Listing
February 2021

Arabidopsis thaliana ambient temperature responsive lncRNAs.

BMC Plant Biol 2018 Jul 13;18(1):145. Epub 2018 Jul 13.

Max Planck Institute for Plant Breeding Research, 50829, Köln, Germany.

Background: Long non-coding RNAs (lncRNAs) have emerged as new class of regulatory molecules in animals where they regulate gene expression at transcriptional and post-transcriptional level. Recent studies also identified lncRNAs in plant genomes, revealing a new level of transcriptional complexity in plants. Thousands of lncRNAs have been predicted in the Arabidopsis thaliana genome, but only a few have been studied in depth.

Results: Here we report the identification of Arabidopsis lncRNAs that are expressed during the vegetative stage of development in either the shoot apical meristem or in leaves. We found that hundreds of lncRNAs are expressed in these tissues, of which 50 show differential expression upon an increase in ambient temperature. One of these lncRNAs, FLINC, is down-regulated at higher ambient temperature and affects ambient temperature-mediated flowering in Arabidopsis.

Conclusion: A number of ambient temperature responsive lncRNAs were identified with potential roles in the regulation of temperature-dependent developmental changes, such as the transition from the vegetative to the reproductive (flowering) phase. The challenge for the future is to characterize the biological function and molecular mode of action of the large number of ambient temperature-regulated lncRNAs that have been identified in this study.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12870-018-1362-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6045843PMC
July 2018

SIEVE ELEMENT-LINING CHAPERONE1 Restricts Aphid Feeding on Arabidopsis during Heat Stress.

Plant Cell 2017 Oct 28;29(10):2450-2464. Epub 2017 Sep 28.

Bioscience, Wageningen University & Research, 6708 PB Wageningen, The Netherlands.

The role of phloem proteins in plant resistance to aphids is still largely elusive. By genome-wide association mapping of aphid behavior on 350 natural accessions, we identified the small heat shock-like (). Detailed behavioral studies on near-isogenic and knockout lines showed that SLI1 impairs phloem feeding. Depending on the haplotype, aphids displayed a different duration of salivation in the phloem. On mutants, aphids prolonged their feeding sessions and ingested phloem at a higher rate than on wild-type plants. The largest phenotypic effects were observed at 26°C, when expression is upregulated. At this moderately high temperature, mutants suffered from retarded elongation of the inflorescence and impaired silique development. Fluorescent reporter fusions showed that SLI1 is confined to the margins of sieve elements where it lines the parietal layer and colocalizes in spherical bodies around mitochondria. This localization pattern is reminiscent of the clamp-like structures observed in previous ultrastructural studies of the phloem and shows that the parietal phloem layer plays an important role in plant resistance to aphids and heat stress.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1105/tpc.16.00424DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5774557PMC
October 2017

Splicing-related genes are alternatively spliced upon changes in ambient temperatures in plants.

PLoS One 2017 3;12(3):e0172950. Epub 2017 Mar 3.

Laboratory of Molecular Biology, Wageningen University and Research, PB Wageningen, The Netherlands.

Plants adjust their development and architecture to small variations in ambient temperature. In a time in which temperatures are rising world-wide, the mechanism by which plants are able to sense temperature fluctuations and adapt to it, is becoming of special interest. By performing RNA-sequencing on two Arabidopsis accession and one Brassica species exposed to temperature alterations, we showed that alternative splicing is an important mechanism in ambient temperature sensing and adaptation. We found that amongst the differentially alternatively spliced genes, splicing related genes are enriched, suggesting that the splicing machinery itself is targeted for alternative splicing when temperature changes. Moreover, we showed that many different components of the splicing machinery are targeted for ambient temperature regulated alternative splicing. Mutant analysis of a splicing related gene that was differentially spliced in two of the genotypes showed an altered flowering time response to different temperatures. We propose a two-step mechanism where temperature directly influences alternative splicing of the splicing machinery genes, followed by a second step where the altered splicing machinery affects splicing of downstream genes involved in the adaptation to altered temperatures.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0172950PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5336241PMC
August 2017

Genetic architecture of plant stress resistance: multi-trait genome-wide association mapping.

New Phytol 2017 Feb 4;213(3):1346-1362. Epub 2016 Oct 4.

Wageningen University and Research Plant Breeding, Wageningen University and Research, PO Box 386, 6700 AJ, Wageningen, the Netherlands.

Plants are exposed to combinations of various biotic and abiotic stresses, but stress responses are usually investigated for single stresses only. Here, we investigated the genetic architecture underlying plant responses to 11 single stresses and several of their combinations by phenotyping 350 Arabidopsis thaliana accessions. A set of 214 000 single nucleotide polymorphisms (SNPs) was screened for marker-trait associations in genome-wide association (GWA) analyses using tailored multi-trait mixed models. Stress responses that share phytohormonal signaling pathways also share genetic architecture underlying these responses. After removing the effects of general robustness, for the 30 most significant SNPs, average quantitative trait locus (QTL) effect sizes were larger for dual stresses than for single stresses. Plants appear to deploy broad-spectrum defensive mechanisms influencing multiple traits in response to combined stresses. Association analyses identified QTLs with contrasting and with similar responses to biotic vs abiotic stresses, and below-ground vs above-ground stresses. Our approach allowed for an unprecedented comprehensive genetic analysis of how plants deal with a wide spectrum of stress conditions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.14220DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5248600PMC
February 2017

AtWRKY22 promotes susceptibility to aphids and modulates salicylic acid and jasmonic acid signalling.

J Exp Bot 2016 05 23;67(11):3383-96. Epub 2016 Apr 23.

Plant Research International, Business Unit Bioscience, Wageningen University and Research Centre, PO Box 16, 6700 AA Wageningen, The Netherlands.

Aphids induce many transcriptional perturbations in their host plants, but the signalling cascades responsible and the effects on plant resistance are largely unknown. Through a genome-wide association (GWA) mapping study in Arabidopsis thaliana, we identified WRKY22 as a candidate gene associated with feeding behaviour of the green peach aphid, Myzus persicae The transcription factor WRKY22 is known to be involved in pathogen-triggered immunity, and WRKY22 gene expression has been shown to be induced by aphids. Assessment of aphid population development and feeding behaviour on knockout mutants and overexpression lines showed that WRKY22 increases susceptibility to M. persicae via a mesophyll-located mechanism. mRNA sequencing analysis of aphid-infested wrky22 knockout plants revealed the up-regulation of genes involved in salicylic acid (SA) signalling and down-regulation of genes involved in plant growth and cell-wall loosening. In addition, mechanostimulation of knockout plants by clip cages up-regulated jasmonic acid (JA)-responsive genes, resulting in substantial negative JA-SA crosstalk. Based on this and previous studies, WRKY22 is considered to modulate the interplay between the SA and JA pathways in response to a wide range of biotic and abiotic stimuli. Its induction by aphids and its role in suppressing SA and JA signalling make WRKY22 a potential target for aphids to manipulate host plant defences.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/erw159DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4892728PMC
May 2016

Identification, cloning and characterization of the tomato TCP transcription factor family.

BMC Plant Biol 2014 Jun 6;14:157. Epub 2014 Jun 6.

Plant Research International, P,O, Box 619, 6700 AP Wageningen, the Netherlands.

Background: TCP proteins are plant-specific transcription factors, which are known to have a wide range of functions in different plant species such as in leaf development, flower symmetry, shoot branching, and senescence. Only a small number of TCP genes has been characterised from tomato (Solanum lycopersicum). Here we report several functional features of the members of the entire family present in the tomato genome.

Results: We have identified 30 Solanum lycopersicum SlTCP genes, most of which have not been described before. Phylogenetic analysis clearly distinguishes two homology classes of the SlTCP transcription factor family - class I and class II. Class II differentiates in two subclasses, the CIN-TCP subclass and the CYC/TB1 subclass, involved in leaf development and axillary shoots formation, respectively. The expression patterns of all members were determined by quantitative PCR. Several SlTCP genes, like SlTCP12, SlTCP15 and SlTCP18 are preferentially expressed in the tomato fruit, suggesting a role during fruit development or ripening. These genes are regulated by RIN (RIPENING INHIBITOR), CNR (COLORLESS NON-RIPENING) and SlAP2a (APETALA2a) proteins, which are transcription factors with key roles in ripening. With a yeast one-hybrid assay we demonstrated that RIN binds the promoter fragments of SlTCP12, SlTCP15 and SlTCP18, and that CNR binds the SlTCP18 promoter. This data strongly suggests that these class I SlTCP proteins are involved in ripening. Furthermore, we demonstrate that SlTCPs bind the promoter fragments of members of their own family, indicating that they regulate each other. Additional yeast one-hybrid studies performed with Arabidopsis transcription factors revealed binding of the promoter fragments by proteins involved in the ethylene signal transduction pathway, contributing to the idea that these SlTCP genes are involved in the ripening process. Yeast two-hybrid data shows that SlTCP proteins can form homo and heterodimers, suggesting that they act together in order to form functional protein complexes and together regulate developmental processes in tomato.

Conclusions: The comprehensive analysis we performed, like phylogenetic analysis, expression studies, identification of the upstream regulators and the dimerization specificity of the tomato TCP transcription factor family provides the basis for functional studies to reveal the role of this family in tomato development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1471-2229-14-157DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4070083PMC
June 2014

Predicting the impact of alternative splicing on plant MADS domain protein function.

PLoS One 2012 25;7(1):e30524. Epub 2012 Jan 25.

Applied Bioinformatics, Plant Research International, Wageningen, The Netherlands.

Several genome-wide studies demonstrated that alternative splicing (AS) significantly increases the transcriptome complexity in plants. However, the impact of AS on the functional diversity of proteins is difficult to assess using genome-wide approaches. The availability of detailed sequence annotations for specific genes and gene families allows for a more detailed assessment of the potential effect of AS on their function. One example is the plant MADS-domain transcription factor family, members of which interact to form protein complexes that function in transcription regulation. Here, we perform an in silico analysis of the potential impact of AS on the protein-protein interaction capabilities of MIKC-type MADS-domain proteins. We first confirmed the expression of transcript isoforms resulting from predicted AS events. Expressed transcript isoforms were considered functional if they were likely to be translated and if their corresponding AS events either had an effect on predicted dimerisation motifs or occurred in regions known to be involved in multimeric complex formation, or otherwise, if their effect was conserved in different species. Nine out of twelve MIKC MADS-box genes predicted to produce multiple protein isoforms harbored putative functional AS events according to those criteria. AS events with conserved effects were only found at the borders of or within the K-box domain. We illustrate how AS can contribute to the evolution of interaction networks through an example of selective inclusion of a recently evolved interaction motif in the MADS AFFECTING FLOWERING1-3 (MAF1-3) subclade. Furthermore, we demonstrate the potential effect of an AS event in SHORT VEGETATIVE PHASE (SVP), resulting in the deletion of a short sequence stretch including a predicted interaction motif, by overexpression of the fully spliced and the alternatively spliced SVP transcripts. For most of the AS events we were able to formulate hypotheses about the potential impact on the interaction capabilities of the encoded MIKC proteins.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0030524PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3266260PMC
June 2012

Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development.

Proc Natl Acad Sci U S A 2012 Jan 11;109(5):1560-5. Epub 2012 Jan 11.

Laboratory of Molecular Biology, Wageningen University, 6708PB Wageningen, The Netherlands.

Floral organs are specified by the combinatorial action of MADS-domain transcription factors, yet the mechanisms by which MADS-domain proteins activate or repress the expression of their target genes and the nature of their cofactors are still largely unknown. Here, we show using affinity purification and mass spectrometry that five major floral homeotic MADS-domain proteins (AP1, AP3, PI, AG, and SEP3) interact in floral tissues as proposed in the "floral quartet" model. In vitro studies confirmed a flexible composition of MADS-domain protein complexes depending on relative protein concentrations and DNA sequence. In situ bimolecular fluorescent complementation assays demonstrate that MADS-domain proteins interact during meristematic stages of flower development. By applying a targeted proteomics approach we were able to establish a MADS-domain protein interactome that strongly supports a mechanistic link between MADS-domain proteins and chromatin remodeling factors. Furthermore, members of other transcription factor families were identified as interaction partners of floral MADS-domain proteins suggesting various specific combinatorial modes of action.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1112871109DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3277181PMC
January 2012

Transcriptome and metabolite profiling show that APETALA2a is a major regulator of tomato fruit ripening.

Plant Cell 2011 Mar 11;23(3):923-41. Epub 2011 Mar 11.

Laboratory of Molecular Biology, Wageningen University, 6700 AP Wageningen, The Netherlands.

Fruit ripening in tomato (Solanum lycopersicum) requires the coordination of both developmental cues as well as the plant hormone ethylene. Although the role of ethylene in mediating climacteric ripening has been established, knowledge regarding the developmental regulators that modulate the involvement of ethylene in tomato fruit ripening is still lacking. Here, we show that the tomato APETALA2a (AP2a) transcription factor regulates fruit ripening via regulation of ethylene biosynthesis and signaling. RNA interference (RNAi)-mediated repression of AP2a resulted in alterations in fruit shape, orange ripe fruits, and altered carotenoid accumulation. Microarray expression analyses of the ripe AP2 RNAi fruits showed altered expression of genes involved in various metabolic pathways, such as the phenylpropanoid and carotenoid pathways, as well as in hormone synthesis and perception. Genes involved in chromoplast differentiation and other ripening-associated processes were also differentially expressed, but softening and ethylene biosynthesis occurred in the transgenic plants. Ripening regulators RIPENING-INHIBITOR, NON-RIPENING, and COLORLESS NON-RIPENING (CNR) function upstream of AP2a and positively regulate its expression. In the pericarp of AP2 RNAi fruits, mRNA levels of CNR were elevated, indicating that AP2a and CNR are part of a negative feedback loop in the regulation of ripening. Moreover, we demonstrated that CNR binds to the promoter of AP2a in vitro.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1105/tpc.110.081273DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3082273PMC
March 2011

SEPALLATA3: the 'glue' for MADS box transcription factor complex formation.

Genome Biol 2009 Feb 25;10(2):R24. Epub 2009 Feb 25.

Plant Research International, Bioscience, Droevendaalsesteeg 1, Wageningen, the Netherlands.

Background: Plant MADS box proteins play important roles in a plethora of developmental processes. In order to regulate specific sets of target genes, MADS box proteins dimerize and are thought to assemble into multimeric complexes. In this study a large-scale yeast three-hybrid screen is utilized to provide insight into the higher-order complex formation capacity of the Arabidopsis MADS box family. SEPALLATA3 (SEP3) has been shown to mediate complex formation and, therefore, special attention is paid to this factor in this study.

Results: In total, 106 multimeric complexes were identified; in more than half of these at least one SEP protein was present. Besides the known complexes involved in determining floral organ identity, various complexes consisting of combinations of proteins known to play a role in floral organ identity specification, and flowering time determination were discovered. The capacity to form this latter type of complex suggests that homeotic factors play essential roles in down-regulation of the MADS box genes involved in floral timing in the flower via negative auto-regulatory loops. Furthermore, various novel complexes were identified that may be important for the direct regulation of the floral transition process. A subsequent detailed analysis of the APETALA3, PISTILLATA, and SEP3 proteins in living plant cells suggests the formation of a multimeric complex in vivo.

Conclusions: Overall, these results provide strong indications that higher-order complex formation is a general and essential molecular mechanism for plant MADS box protein functioning and attribute a pivotal role to the SEP3 'glue' protein in mediating multimerization.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/gb-2009-10-2-r24DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2688274PMC
February 2009

Characterization of the vernalization response in Lolium perenne by a cDNA microarray approach.

Plant Cell Physiol 2006 Apr 31;47(4):481-92. Epub 2006 Jan 31.

Plant Research International, Business Unit Bioscience, PO Box 16, 6700 AA Wageningen, The Netherlands.

Many plant species including temperate grasses require vernalization in order to flower. Vernalization is the process of promotion of flowering after exposure to prolonged periods of cold. To investigate the vernalization response in monocots, the expression patterns of about 1,500 unique genes of Lolium perenne were analyzed by a cDNA microarray approach, at different time points after transfer of plants to low temperatures. Vernalization of L. perenne takes around 80 d and, therefore, the plants were incubated at low temperatures for at least 12 weeks. A total of 70 cold-responsive genes were identified that are either up- or down-regulated with a minimal 2-fold difference compared with the common reference. The majority of these genes show a very rapid response to the cold treatment, indicating that their expression is affected by the cold stress and, therefore, these genes are not likely to be involved in the flowering process. Based on hierarchical clustering, one gene could be identified that is down-regulated towards the end of the cold period and, in addition, a few genes have been found that are up-regulated in the last weeks of the cold treatment and, hence, are putative candidates for genes involved in the vernalization response. Three of the up-regulated genes are homologous to members of the MADS box, CONSTANS-like and JUMONJI families of transcription factors, respectively. The latter two are novel genes not connected previously to vernalization-induced flowering. Furthermore, members of the JUMONJI family of transcription factors have been shown to be involved in chromatin remodeling, suggesting that this molecular mechanism, as in Arabidopsis, plays a role in the regulation of the vernalization response in monocots.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/pcp/pcj015DOI Listing
April 2006

The MADS box gene FBP2 is required for SEPALLATA function in petunia.

Plant Cell 2003 Apr;15(4):914-25

Business Unit Plant Development and Reproduction, Plant Research International, 6700 AA Wageningen, The Netherlands.

The ABC model, which was accepted for almost a decade as a paradigm for flower development in angiosperms, has been subjected recently to a significant modification with the introduction of the new class of E-function genes. This function is required for the proper action of the B- and C-class homeotic proteins and is provided in Arabidopsis by the SEPALLATA1/2/3 MADS box transcription factors. A triple mutant in these partially redundant genes displays homeotic conversion of petals, stamens, and carpels into sepaloid organs and loss of determinacy in the center of the flower. A similar phenotype was obtained by cosuppression of the MADS box gene FBP2 in petunia. Here, we provide evidence that this phenotype is caused by the downregulation of both FBP2 and the paralog FBP5. Functional complementation of the sepallata mutant by FBP2 and our finding that the FBP2 protein forms multimeric complexes with other floral homeotic MADS box proteins indicate that FBP2 represents the same E function as SEP3 in Arabidopsis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC152338PMC
http://dx.doi.org/10.1105/tpc.010280DOI Listing
April 2003