Publications by authors named "Ivan Shchudlo"

3 Publications

  • Page 1 of 1

Measurement of the Li(p,p'γ)Li reaction cross-section and 478 keV photon yield from a thick lithium target at proton energies from 0.7 to 1.85 MeV.

Appl Radiat Isot 2021 Sep 9;175:109821. Epub 2021 Jun 9.

Budker Institute of Nuclear Physics, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia. Electronic address:

The Li (p,p'γ)Li reaction cross section and photon yield from a thick lithium target at proton energies from 0.7 to 1.85 MeV have been measured with a HPGe gamma-ray spectrometer. The spectrometer is calibrated on total and relative sensitivity by reference radionuclide sources of photon radiation. The measurement results are compared with those presented in the EXFOR nuclear reaction database and with other data published in open sources. The reliability of the results of previous studies is analyzed.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.apradiso.2021.109821DOI Listing
September 2021

Method of Measuring High-LET Particles Dose.

Radiat Res 2021 May 21. Epub 2021 May 21.

Budker Institute of Nuclear Physics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.

In boron neutron capture therapy, the total absorbed dose is the sum of four dose components with different relative biological effectiveness (RBE): boron dose, "nitrogen" dose, fast neutron dose and γ-ray dose. We present a new approach for measuring the first three doses. In this work, we provide the details of this method of dose measurement and results when this proposed method is employed.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1667/RADE-21-00015.1DOI Listing
May 2021

Neutron Source Based on Vacuum Insulated Tandem Accelerator and Lithium Target.

Biology (Basel) 2021 Apr 21;10(5). Epub 2021 Apr 21.

Faculty of Physics, Novosibirsk State University, 2 Pirogov Str., 630090 Novosibirsk, Russia.

A compact accelerator-based neutron source has been proposed and created at the Budker Institute of Nuclear Physics in Novosibirsk, Russia. An original design tandem accelerator is used to provide a proton beam. The proton beam energy can be varied within a range of 0.6-2.3 MeV, keeping a high-energy stability of 0.1%. The beam current can also be varied in a wide range (from 0.3 mA to 10 mA) with high current stability (0.4%). In the device, neutron flux is generated as a result of the Li(p,n)Be threshold reaction. A beam-shaping assembly is applied to convert this flux into a beam of epithermal neutrons with characteristics suitable for BNCT. A lot of scientific research has been carried out at the facility, including the study of blistering and its effect on the neutron yield. The BNCT technique is being tested in in vitro and in vivo studies, and the methods of dosimetry are being developed. It is planned to certify the neutron source next year and conduct clinical trials on it. The neutron source served as a prototype for a facility created for a clinic in Xiamen (China).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/biology10050350DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8143170PMC
April 2021
-->