Publications by authors named "Israr Fatima"

6 Publications

  • Page 1 of 1

Discovery of Rift Valley fever virus natural pan-inhibitors by targeting its multiple key proteins through computational approaches.

Sci Rep 2022 06 3;12(1):9260. Epub 2022 Jun 3.

Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia.

The Rift Valley fever virus (RVFV) is a zoonotic arbovirus and pathogenic to both humans and animals. Currently, no proven effective RVFV drugs or licensed vaccine are available for human or animal use. Hence, there is an urgent need to develop effective treatment options to control this viral infection. RVFV glycoprotein N (GN), glycoprotein C (GC), and nucleocapsid (N) proteins are attractive antiviral drug targets due to their critical roles in RVFV replication. In present study, an integrated docking-based virtual screening of more than 6000 phytochemicals with known antiviral activities against these conserved RVFV proteins was conducted. The top five hit compounds, calyxin C, calyxin D, calyxin J, gericudranins A, and blepharocalyxin C displayed optimal binding against all three target proteins. Moreover, multiple parameters from the molecular dynamics (MD) simulations and MM/GBSA analysis confirmed the stability of protein-ligand complexes and revealed that these compounds may act as potential pan-inhibitors of RVFV replication. Our computational analyses may contribute toward the development of promising effective drugs against RVFV infection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-022-13267-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9163866PMC
June 2022

Designing of a multi-epitopes-based peptide vaccine against rift valley fever virus and its validation through integrated computational approaches.

Comput Biol Med 2022 02 17;141:105151. Epub 2021 Dec 17.

Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia. Electronic address:

Since its discovery, the Rift Valley Fever virus (RVFV) has been the source of numerous outbreaks in the Arab Peninsulas and Africa, wreaking havoc on humans and animals. The lack of therapeutics or licensed human vaccines limits the options for controlling RVFV outbreaks. Therefore, RVFV has been prioritized for rapid research and innovation of prevention strategies to control and prevent its outbreaks. The purpose of this study was to design a multi-epitope-based peptide vaccine (MEBPV) against RVFV. Bioinformatics approaches were used to design a potent MEBPV that can potentially activate both CD8 and CD4 T-cell immune responses, and several computational tools were employed to investigate its biological activities. Three antigenic proteins (Nucleocapsid (N), Glycoprotein C (GC), and Glycoprotein N (GN)) from the RVFV were chosen and potential immunogenic T- and B -cell epitopes were predicted from them. Based on in silico analysis, a MEBPV based on highly scored T and B-cell epitopes (6 CTL, 5 HTL, and 4 LBL) combined with linkers and adjuvants was developed. The finest predicted model was used for docking studies with Toll-like receptors (TLR3 and TLR8) and MHC molecules (MHC I and MHC II) after predicting and analyzing the tertiary structure of MEBPV. The designed MEBPV was then tested for stability with TLR3 and TLR8 receptors using molecular dynamics (MD) simulation and MMGBSA analysis. The MEBPV -TLR3, MEBPV -TLR8, MEBPV-MHC I and MEBPV -MHC II docked models were found stable during simulation time in MD and MMGBSA studies. In silico analysis revealed that the constructed vaccine could elicit both cell-mediated and humoral immune responses simultaneously. The proposed MEBPV could be a strong candidate against RVFV, but it will need to be tested in the laboratory to guarantee its safety and immunogenicity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2021.105151DOI Listing
February 2022

Comparative Genomic Characterization of Buffalo Fibronectin Type III Domain Proteins: Exploring the Novel Role of FNDC5/Irisin as a Ligand of Gonadal Receptors.

Biology (Basel) 2021 Nov 19;10(11). Epub 2021 Nov 19.

State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China.

FN-III proteins are widely distributed in mammals and are usually involved in cellular growth, differentiation, and adhesion. The FNDC5/irisin regulates energy metabolism and is present in different tissues (liver, brain, etc.). The present study aimed to investigate the physiochemical characteristics and the evolution of FN-III proteins and FNDC5/irisin as a ligand targeting the gonadal receptors including androgen (AR), DDB1 and CUL4 associated factor 6 (DCAF6), estrogen-related receptor β (ERR-β), estrogen-related receptor γ (ERR-γ), Krüppel-like factor 15 (KLF15), and nuclear receptor subfamily 3 group C member 1 (NR3C1). Moreover, the putative role of irisin in folliculogenesis and spermatogenesis was also elucidated. We presented the molecular structure and function of 29 genes widely distributed in the buffalo genome. Phylogenetic analysis, motif, and conserved domain pattern demonstrated the evolutionary well-conserved nature of FN-III proteins with a variety of stable to unstable, hydrophobic to hydrophilic, and thermostable to thermo-unstable properties. The comparative structural configuration of FNDC5 revealed amino acid variations but still the FNDC5 structure of humans, buffalo, and cattle was quite similar to each other. For the first time, we predicted the binding scores and interface residues of FNDC5/irisin as a ligand for six representative receptors having a functional role in energy homeostasis, and a significant involvement in folliculogenesis and spermatogenesis in buffalo.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/biology10111207DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8615036PMC
November 2021

Designing multi-epitope vaccine against Staphylococcus aureus by employing subtractive proteomics, reverse vaccinology and immuno-informatics approaches.

Comput Biol Med 2021 05 15;132:104389. Epub 2021 Apr 15.

College of Life Science and Technology, Guangxi University, Nanning, PR China. Electronic address:

Staphylococcus aureus is a deadly human bacterial pathogen that causes a wide variety of clinical manifestations. Invasive S. aureus infections in hospitals and the community are one of the main causes of mortality and morbidity, as virulent and multi-drug-resistant strains have evolved. There is an unmet and urgent clinical need for immune-based non-antibiotic approaches to treat these infections as the growing antibiotic resistance poses a significant public health danger. Subtractive proteomics assisted reverse vaccinology-based immunoinformatics pipeline was used in this study to target the suitable antigenic proteins for the development of multi-epitope vaccine (MEV). Three essential virulent and antigenic proteins were identified including Glycosyltransferase, Elastin Binding Protein, and Staphylococcal secretory antigen. A variety of immunoinformatics tools have been used to forecast T-cell and B-cell epitopes from target proteins. Seven CTL, five HTL, and eight LBL epitopes, connected through suitable linkers and adjuvant, were employed to design 444 amino acids long MEV construct. The vaccine was paired with the TLR4 agonist 50S ribosomal protein L7/L12 adjuvant to enhance the immune response towards the vaccine. The predicted MEV structure was assessed to be highly antigenic, non-toxic, non-allergenic, flexible, stable, and soluble. Molecular docking simulation of the MEV with the human TLR4 (toll-like receptor 4) and major histocompatibility complex molecules (MHCI and MHCII) was performed to validate the interactions with the receptors. Molecular dynamics (MD) simulation and MMGBSA binding free energy analyses were carried out for the stability evaluation and binding of the MEV docked complexes with TLR4, MHCI and MHCII. To achieve maximal vaccine protein expression with optimal post-translational modifications, MEV was reverse translated, its mRNA structure was analyzed, and finally in silico cloning was performed into E. coli expression host. These rigorous computational analyses supported the effectivity of proposed MEV in protection against infections associated with S. aureus. However, further experimental validations are required to fully evaluate the potential of proposed vaccine candidate.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2021.104389DOI Listing
May 2021

Designing of a next generation multiepitope based vaccine (MEV) against SARS-COV-2: Immunoinformatics and in silico approaches.

PLoS One 2020 22;15(12):e0244176. Epub 2020 Dec 22.

College of Life Science and Technology, Guangxi University, Nanning, P. R. China.

Coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory coronavirus 2 (SARS-COV-2) is a significant threat to global health security. Till date, no completely effective drug or vaccine is available to cure COVID-19. Therefore, an effective vaccine against SARS-COV-2 is crucially needed. This study was conducted to design an effective multiepitope based vaccine (MEV) against SARS-COV-2. Seven highly antigenic proteins of SARS-COV-2 were selected as targets and different epitopes (B-cell and T-cell) were predicted. Highly antigenic and overlapping epitopes were shortlisted. Selected epitopes indicated significant interactions with the HLA-binding alleles and 99.93% coverage of the world's population. Hence, 505 amino acids long MEV was designed by connecting 16 MHC class I and eleven MHC class II epitopes with suitable linkers and adjuvant. MEV construct was non-allergenic, antigenic, stable and flexible. Furthermore, molecular docking followed by molecular dynamics (MD) simulation analyses, demonstrated a stable and strong binding affinity of MEV with human pathogenic toll-like receptors (TLR), TLR3 and TLR8. Finally, MEV codons were optimized for its in silico cloning into Escherichia coli K-12 system, to ensure its increased expression. Designed MEV in present study could be a potential candidate for further vaccine production process against COVID-19. However, to ensure its safety and immunogenic profile, the proposed MEV needs to be experimentally validated.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0244176PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7755200PMC
January 2021

Reverse vaccinology assisted designing of multiepitope-based subunit vaccine against SARS-CoV-2.

Infect Dis Poverty 2020 Sep 16;9(1):132. Epub 2020 Sep 16.

College of Life Science and Technology, Guangxi University, Nanning, P. R. China.

Background: Coronavirus disease 2019 (COVID-19) linked with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cause severe illness and life-threatening pneumonia in humans. The current COVID-19 pandemic demands an effective vaccine to acquire protection against the infection. Therefore, the present study was aimed to design a multiepitope-based subunit vaccine (MESV) against COVID-19.

Methods: Structural proteins (Surface glycoprotein, Envelope protein, and Membrane glycoprotein) of SARS-CoV-2 are responsible for its prime functions. Sequences of proteins were downloaded from GenBank and several immunoinformatics coupled with computational approaches were employed to forecast B- and T- cell epitopes from the SARS-CoV-2 highly antigenic structural proteins to design an effective MESV.

Results: Predicted epitopes suggested high antigenicity, conserveness, substantial interactions with the human leukocyte antigen (HLA) binding alleles, and collective global population coverage of 88.40%. Taken together, 276 amino acids long MESV was designed by connecting 3 cytotoxic T lymphocytes (CTL), 6 helper T lymphocyte (HTL) and 4 B-cell epitopes with suitable adjuvant and linkers. The MESV construct was non-allergenic, stable, and highly antigenic. Molecular docking showed a stable and high binding affinity of MESV with human pathogenic toll-like receptors-3 (TLR3). Furthermore, in silico immune simulation revealed significant immunogenic response of MESV. Finally, MEV codons were optimized for its in silico cloning into the Escherichia coli K-12 system, to ensure its increased expression.

Conclusion: The MESV developed in this study is capable of generating immune response against COVID-19. Therefore, if designed MESV further investigated experimentally, it would be an effective vaccine candidate against SARS-CoV-2 to control and prevent COVID-19.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s40249-020-00752-wDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7492789PMC
September 2020
-->