Publications by authors named "Ishfaq Hassan Mir"

3 Publications

  • Page 1 of 1

Targeting molecular signal transduction pathways in hepatocellular carcinoma and its implications for cancer therapy.

Cell Biol Int 2021 Jul 16. Epub 2021 Jul 16.

Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, 605 014, India.

Hepatocellular carcinoma is a substantial health concern. It is currently the third dominating cause of mortality associated with cancer worldwide. The development of hepatocellular carcinoma is an intricate process that encompasses the impairment of genetic, epigenetic, and signal transduction mechanisms contributing to an aberrant metabolic system, enabling tumorigenesis. Throughout the past decade, research has led to the revelation of molecular pathways implicated in the progression of this notorious disorder. The altered signal transduction pathways, such as the MAPK pathway, PI3K/AKT/mTOR pathway, WNT/β-catenin pathway, hepatocyte growth factor/c-MET pathway, and JAK/STAT signaling pathway is of much therapeutic significance, as targeting them may avail to revert, retard or avert hepatocarcinogenesis. The present review article sums up the contemporary knowledge of such signaling mechanisms, including their therapeutic targets and betokens that novel and efficacious therapies can be developed only by the keen understanding of their character in hepatocarcinogenesis. In additament, we address the role of consequential therapeutic agents and preclinical non-drug therapies known for combating hepatocarcinogenesis. This article is protected by copyright. All rights reserved.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbin.11670DOI Listing
July 2021

Curcuma longa and Trigonella foenum graecum-enriched nutrient mixture from germinated Macrotyloma uniflorum and Vigna radiate ameliorate nonalcoholic fatty liver diseases in rats.

J Food Biochem 2020 04 3;44(4):e13159. Epub 2020 Feb 3.

Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India.

The prevalence of nonalcoholic fatty liver is increasing due to modern lifestyle. Germinated and dehulled Macrotyloma uniflorum and Vigna radiate were shown to have enhanced nutrients. Curcuma longa and Trigonella foenum graecum were proven hepatoprotective.The supplementation of the nutrient herbal mixture to the MCD diet-induced steatosis shows reduced hepatic fat accumulation and lipid profile, and liver injury markers in serum also reserved in normal. Increased serum albumin in the treatment group indicates that the liver function is enhanced than that of steatosis. The supplementation of the herbal mixture has preserved the hepatic antioxidant. Zymographic analysis of matrix metalloproteinase, western blot determination of α-SMA, and histological evolution (H&E, Sirius red) depicted reduced fibrosis and reveled management of hepatic stellate cells in quiescent form. The present study concludes that the herbal mixture has reduced hepatocyte fat accumulation in steatotic animals, and curtailed the oxidative stress, further it prevents the progression of steatohepatitis. PRACTICAL APPLICATIONS: Fatty liver diseases can be treated by modulating the diet composition such as consuming food rich in the nutrient herbal mixture. In this study, the nutrient mixture was made with dynamic food processing techniques such as germination, dehulling, and milling to augment the nutritional contents. Besides, Macrotyloma uniflorum, Vigna radiate, Curcuma longa, and Trigonella foenum graecum were used to improve the medicinal value and antioxidant. This formulation could target the various stages of NAFLD. This study revealed that the nutrient herbal mixture reduces the steatosis of the liver and curtailed the progression of steatohepatitis from hepatic steatosis. Since the edible foodstuff was used to make the nutrient mixture, it has excellent clinical application.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/jfbc.13159DOI Listing
April 2020

Nutrient mixture from germinated legumes: Enhanced medicinal value with herbs-attenuated liver cirrhosis.

J Food Biochem 2020 01 23;44(1):e13085. Epub 2019 Oct 23.

Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India.

Among various food processing strategies, germination and dehulling enhance the nutritional content of the food, and the addition of herbs to this could improve the medicinal value. The milled powders of germinated Macrotyloma uniflorum (horse gram) and Vigna radiata (green gram) were used to make the nutrient mixture. Further, Curcuma longa (turmeric) and Trigonella foenum graecum (fenugreek) were used to improve its medicinal value. The prepared nutrient mixture has high nutritional value, antioxidant potential, and reduced antinutrient factors. Supplementation of nutrient mixture reduced oxidative stress-mediated hepatocyte injury on the CCl -induced liver cirrhosis model. Further, histological examination (H&E and Sirius red), matrix metalloproteinase gelatin zymography, and Western blot revealed the management of hepatic stellate cells in an inactive stage thereby reduced cirrhosis. These findings conclude that the supplementation of nutrient mixture formulation protected and effectively prevented liver cirrhosis. PRACTICAL APPLICATIONS: This study has a good impact on nutritional therapy for liver diseases. Many of the chronic liver diseases are associated with severe malnutrition and hypoalbuminemia, which further worsens the condition. This study would emphasize the nutritional therapy to treat such imbalance and enriching the medicinal value of nutrition mixture with herbs could target different pathophysiological changes and provide better defense in liver disease patients. Since this nutrient mixture is from common edible natural resources, it could reach the pharmaceutical industry's attention to the highest production and marketing.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/jfbc.13085DOI Listing
January 2020
-->