Publications by authors named "Isabela Sandim Souza Leite Weitzel"

2 Publications

  • Page 1 of 1

Failure load and shear bond strength of indirect materials bonded to enamel after aging.

Gen Dent 2021 May-Jun;69(3):24-29

This study evaluated the failure load and the shear bond strength of 4 block materials indicated for computer-aided design/computer-aided manufacturing (CAD/CAM) of dental veneers: lithium disilicate, feldspathic ceramic, polymer-infiltrated ceramic, and nanohybrid composite. The tested hypothesis was that the material that combined an elastic modulus similar to that of enamel with the highest bond strength values would present the highest failure load. From prefabricated CAD/CAM blocks, disc-shaped specimens (6.0 × 0.7 mm; n = 10) and cylinders (2.4 × 2.5 mm; n = 10) were fabricated for load-to-failure and shear bond strength tests, respectively. Materials were adhesively bonded to flattened bovine enamel surfaces, stored in distilled water at 37°C for 90 days, and subjected to thermocycling (2000 cycles of 5°C to 55°C). Discs of restorative material were bonded to enamel and subjected to an increasing load that was applied perpendicular to the bonding interface until catastrophic failure occurred. A chisel was used to apply an increasing load parallel to the adhesive interface between the enamel and a cylinder of restorative material to measure shear bond strength. Data were subjected to a Weibull analysis and 1-way analysis of variance followed by a Tukey post hoc test (α = 0.05). The type of restorative material significantly affected the (mean [SD]) failure load when bonded to enamel (P = 0.006): polymer-infiltrated ceramic (1167.9 [310.2] N) = feldspathic ceramic (1115.0 [382.0] N) = nanohybrid composite (1067.3 [251.0] N) > lithium disilicate (786.2 [304.5] N). The type of restorative material also significantly affected the (mean [SD]) bond strength to enamel (P < 0.001): lithium disilicate (32.81 [11.19] MPa) = polymer-infiltrated ceramic (27.04 [7.65] MPa) > feldspathic ceramic (21.11 [9.16] MPa) > nanohybrid composite (9.08 [3.66] MPa). The polymer-infiltrated ceramic presented the best performance when bonded to enamel.
View Article and Find Full Text PDF

Download full-text PDF

Source
April 2021

Effect of grinding and aging on subcritical crack growth of a Y-TZP ceramic.

Braz Oral Res 2018 3;32:e32. Epub 2018 May 3.

Post Graduation Program in Dental Science, Prosthetic Dentistry Unit, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, Brazil.

This study aimed to investigate slow crack growth (SCG) behavior of a zirconia ceramic after grinding and simulated aging with low-temperature degradation (LTD). Complementary analysis of hardness, surface topography, crystalline phase transformation, and roughness were also measured. Disc-shaped specimens (15 mm Ø × 1.2 mm thick, n = 42) of a full-contour Y-TZP ceramic (Zirlux FC, Amherst) were manufactured according to ISO:6872-2008, and then divided into: Ctrl - as-sintered condition; Ctrl LTD - as-sintered after aging in autoclave (134°C, 2 bar, 20 h); G - ground with coarse diamond bur (grit size 181 μm); G LTD - ground and aged. The SCG parameters were measured by a dynamic biaxial flexural test, which determines the tensile stress versus stress rate under four different rates: 100, 10, 1 and 0.1 MPa/s. LTD led to m-phase content increase, as well as grinding (m-phase content: Ctrl - 0%; G - 12.3%; G LTD - 59.9%; Ctrl LTD - 81%). Surface topography and roughness analyses showed that grinding created an irregular surface (increased roughness) and aging did not promote any relevant surface change. There was no statistical difference on surface hardness among different conditions. The control group presented the lowest strength values in all tested rates. Regarding SCG, ground conditions were less susceptible to SCG, delaying its occurrence. Aging (LTD) caused an increase in SCG susceptibility for the as-sintered condition (i.e. G < G LTD < Ctrl < Ctrl LTD).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1590/1807-3107bor-2018.vol32.0032DOI Listing
May 2018