Publications by authors named "Irene Fusco"

7 Publications

  • Page 1 of 1

Acetylcholine modulates K and Na currents in human basal forebrain cholinergic neuroblasts through an autocrine/paracrine mechanism.

J Neurochem 2020 Oct 8. Epub 2020 Oct 8.

Department of Experimental and Clinical Medicine, Section of Human Anatomy and Histology, University of Florence, Florence, Italy.

The Nucleus Basalis of Meynert (NBM) is the main source of cholinergic neurons in the basal forebrain to be crucially involved in cognitive functions and whose degeneration correlates with cognitive decline in major degenerative pathologies as Alzheimer's and Parkinson's diseases. However, knowledge concerning NBM neurons derived from human brain is very limited to date. We recently characterized a primary culture of proliferating neuroblasts isolated from the human fetal NBM (hfNBM) as immature cholinergic neurons expressing the machinery to synthetize and release acetylcholine. Here we studied in detail electrophysiological features and cholinergic effects in this cell culture by patch-clamp recordings. Our data demonstrate that atropine-blocked muscarinic receptor activation by acetylcholine or carbachol enhanced I and reduced I currents by stimulating G -coupled M2 or phospholipase C-coupled M3 receptors, respectively. Inhibition of acetylcholine esterase activity by neostigmine unveiled a spontaneous acetylcholine release from hfNBM neuroblasts that might account for an autocrine/paracrine signaling during human brain development. Present data provide the first description of cholinergic effects in human NBM neurons and point to a role of acetylcholine as an autocrine/paracrine modulator of voltage-dependent channels. Our research could be of relevance in understanding the mechanisms of cholinergic system development and functions in the human brain, either in health or disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/jnc.15209DOI Listing
October 2020

Adenosine A receptors inhibit K currents and cell differentiation in cultured oligodendrocyte precursor cells and modulate sphingosine-1-phosphate signaling pathway.

Biochem Pharmacol 2020 07 3;177:113956. Epub 2020 Apr 3.

Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Italy.

Oligodendrocytes are the only myelinating cells in the brain and differentiate from their progenitors (OPCs) throughout adult life. However, this process fails in demyelinating pathologies. Adenosine is emerging as an important player in OPC differentiation and we recently demonstrated that adenosine A receptors inhibit cell maturation by reducing voltage-dependent K currents. No data are available to date about the A receptor (AR) subtype. The bioactive lipid mediator sphingosine-1-phosphate (S1P) and its receptors (S1P) are also crucial modulators of OPC development. An interaction between this pathway and the AR is reported in peripheral cells. We studied the role of ARs in modulating K currents and cell differentiation in OPC cultures and we investigated a possible interplay with S1P signaling. Our data indicate that the AR agonist BAY60-6583 and its new analogue P453 inhibit K currents in cultured OPC and the effect was prevented by the AR antagonist MRS1706, by K channel blockers and was differently modulated by the S1P analogue FTY720-P. An acute (10 min) exposure of OPCs to BAY60-6583 also increased the phosphorylated form of sphingosine kinase 1 (SphK1). A chronic (7 days) treatment with the same agonist decreased OPC differentiation whereas SphK1/2 inhibition exerted the opposite effect. Furthermore, AR was overexpressed during OPC differentiation, an effect prevented by the pan SphK1/2 inhibitor VPC69047. Finally, AR silenced cells showed increased cell maturation, decreased SphK1 expression and enhanced S1P lyase levels. We conclude that ARs inhibit K currents and cell differentiation and positively modulate S1P synthesis in cultured OPCs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcp.2020.113956DOI Listing
July 2020

Functional characterization of a novel adenosine A receptor agonist on short-term plasticity and synaptic inhibition during oxygen and glucose deprivation in the rat CA1 hippocampus.

Brain Res Bull 2019 09 24;151:174-180. Epub 2019 May 24.

Department of Neuroscience, Psychology, Drug Research and Child Health, NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy. Electronic address:

Adenosine is an endogenous neuromodulator exerting its biological functions via four receptor subtypes, A, A, A, and A. A receptors (ARs) are expressed at hippocampal level where they are known to inhibit paired pulse facilitation (PPF), whose reduction reflects an increase in presynaptic glutamate release. The effect of ARs on PPF is known to be sensitive not only to AR blockade but also to the AR antagonist DPCPX, indicating that it involves AR activation. In this study we provide the first functional characterization of the newly synthesized non-nucleoside like AR agonist P453, belonging to the amino-3,5-dicyanopyridine series. By extracellular electrophysiological recordings, we demonstrated that P453 mimicked the effect of the prototypical AR agonist BAY60-6583 in decreasing PPF at Schaffer collateral-CA1 synapses in rat acute hippocampal slices. This effect was prevented by two different AR antagonists, PSB603 and MRS1754, and by the AR antagonist DPCPX. We also investigated the functional role of AR during a 2 min of oxygen and glucose deprivation (OGD) insult, known to produce a reversible fEPSP inhibition due to adenosine AR activation. We found that P453 and BAY60-6583 significantly delayed the onset of fEPSP reduction induced by OGD and the effect was blocked by PSB603. We conclude that P453 is a functional AR agonist whose activation decreases PPF by increasing glutamate release at presynaptic terminals and delays AR-mediated fEPSP inhibition during a 2-minute OGD insult.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainresbull.2019.05.018DOI Listing
September 2019

Adenosine A3 receptor activation inhibits pronociceptive N-type Ca2+ currents and cell excitability in dorsal root ganglion neurons.

Pain 2019 05;160(5):1103-1118

Division of Pharmacology and Toxicology, Department of NEUROFARBA, University of Florence, Italy.

Recently, studies have focused on the antihyperalgesic activity of the A3 adenosine receptor (A3AR) in several chronic pain models, but the cellular and molecular basis of this effect is still unknown. Here, we investigated the expression and functional effects of A3AR on the excitability of small- to medium-sized, capsaicin-sensitive, dorsal root ganglion (DRG) neurons isolated from 3- to 4-week-old rats. Real-time quantitative polymerase chain reaction experiments and immunofluorescence analysis revealed A3AR expression in DRG neurons. Patch-clamp experiments demonstrated that 2 distinct A3AR agonists, Cl-IB-MECA and the highly selective MRS5980, inhibited Ca-activated K (KCa) currents evoked by a voltage-ramp protocol. This effect was dependent on a reduction in Ca influx via N-type voltage-dependent Ca channels, as Cl-IB-MECA-induced inhibition was sensitive to the N-type blocker PD173212 but not to the L-type blocker, lacidipine. The endogenous agonist adenosine also reduced N-type Ca currents, and its effect was inhibited by 56% in the presence of A3AR antagonist MRS1523, demonstrating that the majority of adenosine's effect is mediated by this receptor subtype. Current-clamp recordings demonstrated that neuronal firing of rat DRG neurons was also significantly reduced by A3AR activation in a MRS1523-sensitive but PD173212-insensitive manner. Intracellular Ca measurements confirmed the inhibitory role of A3AR on DRG neuronal firing. We conclude that pain-relieving effects observed on A3AR activation could be mediated through N-type Ca channel block and action potential inhibition as independent mechanisms in isolated rat DRG neurons. These findings support A3AR-based therapy as a viable approach to alleviate pain in different pathologies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/j.pain.0000000000001488DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6669900PMC
May 2019

Dexpramipexole enhances hippocampal synaptic plasticity and memory in the rat.

Neuropharmacology 2018 12 3;143:306-316. Epub 2018 Oct 3.

Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy.

Even though pharmacological approaches able to counteract age-dependent cognitive impairment have been highly investigated, drugs improving cognition and memory are still an unmet need. It has been hypothesized that sustaining energy dynamics within the aged hippocampus can boost memory storage by sustaining synaptic functioning and long term potentiation (LTP). Dexpramipexole (DEX) is the first-in-class compound able to sustain neuronal bioenergetics by interacting with mitochondrial F1Fo-ATP synthase. In the present study, for the first time we evaluated the effects of DEX on synaptic fatigue, LTP induction, learning and memory retention. We report that DEX improved LTP maintenance in CA1 neurons of acute hippocampal slices from aged but not young rats. However, we found no evidence that DEX counteracted two classic parameters of synaptic fatigue such as fEPSP reduction or the train area during the high frequency stimulation adopted to induce LTP. Interestingly, patch-clamp recordings in rat hippocampal neurons revealed that DEX dose-dependently inhibited (IC 814 nM) the I current, a rapidly-inactivating K current that negatively regulates neuronal excitability as well as cognition and memory processes. In keeping with this, DEX counteracted both scopolamine-induced spatial memory loss in rats challenged in Morris Water Maze test and memory retention in rats undergoing Novel Object Recognition. Overall, the present study discloses the ability of DEX to boost hippocampal synaptic plasticity, learning and memory. In light of the good safety profile of DEX in humans, our findings may have a realistic translational potential to treatment of cognitive disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropharm.2018.10.003DOI Listing
December 2018

The Selective Antagonism of Adenosine A Receptors Reduces the Synaptic Failure and Neuronal Death Induced by Oxygen and Glucose Deprivation in Rat CA1 Hippocampus .

Front Pharmacol 2018 24;9:399. Epub 2018 Apr 24.

Department of Neuroscience, Psychology, Drug Research and Child Health, NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy.

Ischemia is a multifactorial pathology characterized by different events evolving in time. Immediately after the ischemic insult, primary brain damage is due to the massive increase of extracellular glutamate. Adenosine in the brain increases dramatically during ischemia in concentrations able to stimulate all its receptors, A, A, A, and A. Although adenosine exerts clear neuroprotective effects through A receptors during ischemia, the use of selective A receptor agonists is hampered by their undesirable peripheral side effects. So far, no evidence is available on the involvement of adenosine A receptors in cerebral ischemia. This study explored the role of adenosine A receptors on synaptic and cellular responses during oxygen and glucose deprivation (OGD) in the CA1 region of rat hippocampus . We conducted extracellular recordings of CA1 field excitatory post-synaptic potentials (fEPSPs); the extent of damage on neurons and glia was assessed by immunohistochemistry. Seven min OGD induced anoxic depolarization (AD) in all hippocampal slices tested and completely abolished fEPSPs that did not recover after return to normoxic condition. Seven minutes OGD was applied in the presence of the selective adenosine A receptor antagonists MRS1754 (500 nM) or PSB603 (50 nM), separately administered 15 min before, during and 5 min after OGD. Both antagonists were able to prevent or delay the appearance of AD and to modify synaptic responses after OGD, allowing significant recovery of neurotransmission. Adenosine A receptor antagonism also counteracted the reduction of neuronal density in CA1 stratum pyramidale, decreased apoptosis at least up to 3 h after the end of OGD, and maintained activated mTOR levels similar to those of controls, thus sparing neurons from the degenerative effects caused by the simil-ischemic conditions. Astrocytes significantly proliferated in CA1 stratum radiatum already 3 h after the end of OGD, possibly due to increased glutamate release. Areceptor antagonism significantly prevented astrocyte modifications. Both A receptor antagonists did not protect CA1 neurons from the neurodegeneration induced by glutamate application, indicating that the antagonistic effect is upstream of glutamate release. The selective antagonists of the adenosine A receptor subtype may thus represent a new class of neuroprotective drugs in ischemia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fphar.2018.00399DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5928446PMC
April 2018

Purinergic signalling in brain ischemia.

Neuropharmacology 2016 05 12;104:105-30. Epub 2015 Nov 12.

Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy.

Ischemia is a multifactorial pathology characterized by different events evolving in the time. After ischemia a primary damage due to the early massive increase of extracellular glutamate is followed by activation of resident immune cells, i.e microglia, and production or activation of inflammation mediators. Protracted neuroinflammation is now recognized as the predominant mechanism of secondary brain injury progression. Extracellular concentrations of ATP and adenosine in the brain increase dramatically during ischemia in concentrations able to stimulate their respective specific P2 and P1 receptors. Both ATP P2 and adenosine P1 receptor subtypes exert important roles in ischemia. Although adenosine exerts a clear neuroprotective effect through A1 receptors during ischemia, the use of selective A1 agonists is hampered by undesirable peripheral effects. Evidence up to now in literature indicate that A2A receptor antagonists provide protection centrally by reducing excitotoxicity, while agonists at A2A (and possibly also A2B) and A3 receptors provide protection by controlling massive infiltration and neuroinflammation in the hours and days after brain ischemia. Among P2X receptors most evidence indicate that P2X7 receptor contribute to the damage induced by the ischemic insult due to intracellular Ca(2+) loading in central cells and facilitation of glutamate release. Antagonism of P2X7 receptors might represent a new treatment to attenuate brain damage and to promote proliferation and maturation of brain immature resident cells that can promote tissue repair following cerebral ischemia. Among P2Y receptors, antagonists of P2Y12 receptors are of value because of their antiplatelet activity and possibly because of additional anti-inflammatory effects. Moreover strategies that modify adenosine or ATP concentrations at injury sites might be of value to limit damage after ischemia. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropharm.2015.11.007DOI Listing
May 2016