Publications by authors named "Irene Dapia"

9 Publications

  • Page 1 of 1

Further definition of the proximal 19p13.3 microdeletion/microduplication syndrome and implication of PIAS4 as the major contributor.

Clin Genet 2020 03 23;97(3):467-476. Epub 2020 Jan 23.

Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario LaPaz-UAM, Paseo de La Castellana, Madrid, Spain.

The proximal 19p13.3 microdeletion/microduplication (prox19p13.3del/dup) syndrome is a recently described disorder with common clinical features including developmental delay, intellectual disability, speech delay, facial dysmorphic features with ear defects, anomalies of the hands and feet, umbilical hernia and hypotonia. While deletions are associated with macrocephaly, patients with duplications have microcephaly. The smallest region of overlap in multiple patients (113.5 kb) included three genes and one pseudogene, with a suggested major role of PIAS4 in determination of the phenotype and head size in these patients. Here, we refine the prox19p13.3del/dup with four additional patients: two with microdeletions, one with microduplication and one family with single-nucleotide nonsense variant in PIAS4. The patient with the PIAS4 loss of function variant displayed a phenotype quite similar to deletion patients -including the macrocephaly and many other core features of the syndrome. Patient's SNV was inherited from her mother who is similarly affected. Thus, our data indicate that PIAS4 is a major contributor to the proximal 19p13.3del/dup syndrome phenotype. In summary, we report the first patient with a pathogenic variant in PIAS4- and three additional rearrangements at the proximal 19p13.3 locus. These observations add further evidence about the molecular basis of this microdeletion/microduplication syndrome.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/cge.13689DOI Listing
March 2020

Further delineation of neuropsychiatric findings in Tatton-Brown-Rahman syndrome due to disease-causing variants in DNMT3A: seven new patients.

Eur J Hum Genet 2020 04 4;28(4):469-479. Epub 2019 Nov 4.

Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz-UAM, Paseo de La Castellana, 261, 28046, Madrid, Spain.

Tatton-Brown-Rahman (TBRS) syndrome is a recently described overgrowth syndrome caused by loss of function variants in the DNMT3A gene. This gene encodes for a DNA methyltransferase 3 alpha, which is involved in epigenetic regulation, especially during embryonic development. Somatic variants in DNMT3A have been widely studied in different types of tumors, including acute myeloid leukemia, hematopoietic, and lymphoid cancers. Germline gain-of-function variants in this gene have been recently implicated in microcephalic dwarfism. Common clinical features of patients with TBRS include tall stature, macrocephaly, intellectual disability (ID), and a distinctive facial appearance. Differential diagnosis of TBRS comprises Sotos, Weaver, and Malan Syndromes. The majority of these disorders present other clinical features with a high clinical overlap, making necessary a molecular confirmation of the clinical diagnosis. We here describe seven new patients with variants in DNMT3A, four of them with neuropsychiatric disorders, including schizophrenia and psychotic behavior. In addition, one of the patients has developed a brain tumor in adulthood. This patient has also cerebral atrophy, aggressive behavior, ID, and abnormal facial features. Clinical evaluation of this group of patients should include a complete neuropsychiatric assessment together with psychological support in order to detect and manage abnormal behaviors such as aggressiveness, impulsivity, and attention deficit-hyperactivity disorder. TBRS should be suspected in patients with overgrowth, ID, tall stature, and macrocephaly, who also have some neuropsychiatric disorders without any genetic defects in the commonest overgrowth disorders. Molecular confirmation in these patients is mandatory.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41431-019-0485-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7080728PMC
April 2020

Prediction models for voriconazole pharmacokinetics based on pharmacogenetics: AN exploratory study in a Spanish population.

Int J Antimicrob Agents 2019 Oct 4;54(4):463-470. Epub 2019 Jul 4.

Clinical Pharmacology Department, IdiPAZ, La Paz University Hospital School of Medicine, Autonomous University of Madrid, Paseo de la Castellana 261, 28046 Madrid, Spain. Electronic address:

Individualisation of the therapeutic strategy for the oral antifungal agent voriconazole (VCZ) is extremely important for treatment optimisation. To date, regulatory agencies include CYP2C19 as the only major pharmacogenetic (PGx) biomarker in their dosing guidelines; however, the effect of other genes might be important for VCZ dosing prediction. We developed an exploratory PGx study to identify new biomarkers related to VCZ pharmacokinetics. We first designed a 'clinical practice VCZ-AUC prediction model' based on CYP2C19 to be used as a reference model in this study. We then designed a multifactorial polygenic prediction model and found that genetic variability in FMO3, NR1I2, POR, CYP2C9 and CYP3A4 partially contributes to VCZ total area under the concentration-time curve (AUC) interindividual variability, and its inclusion in VCZ AUC prediction algorithms improves model precision. To our knowledge, there are no PGx studies specifically relating POR, FMO3 and NR1I2 polymorphisms to VCZ pharmacokinetic variability. Further research is needed in order to test the model proposed here.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijantimicag.2019.06.026DOI Listing
October 2019

MRX93 syndrome (BRWD3 gene): five new patients with novel mutations.

Clin Genet 2019 06 29;95(6):726-731. Epub 2019 Apr 29.

Institute of Medical and Molecular Genetics (INGEMM)-IdiPAZ, Hospital Universitario La Paz-UAM Paseo de La Castellana, Madrid, Spain.

Overgrowth syndromes (OGS) comprise a heterogeneous group of disorders whose main characteristic is that either the weight, height, or head circumference are above the 97th centile or 2 to 3 SD above the mean for age and sex. Additional features, such as facial dysmorphism, developmental delay or intellectual disability (ID), congenital anomalies, neurological problems and an increased risk of neoplasia are usually associated with OGS. Genetic analysis in patients with overlapping clinical features is essential, to distinguish between two or more similar conditions, and to provide appropriate genetic counseling and recommendations for follow up. In the present paper, we report five new patients (from four unrelated families) with an X-linked mental retardation syndrome with overgrowth (XMR93 syndrome), also known as XLID-BRWD3-related syndrome. The main features of these patients include ID, macrocephaly and dysmorphic facial features. XMR93 syndrome is a recently described disorder caused by mutations in the Bromodomain and WD-repeat domain-containing protein 3 (BRWD3) gene. This article underscores the importance of genetic screening by exome sequencing for patients with OGS and ID with unclear clinical diagnosis, and expands the number of reported individuals with XMR93 syndrome, highlighting the clinical features of this unusual disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/cge.13504DOI Listing
June 2019

Further delineation of Malan syndrome.

Hum Mutat 2018 09 25;39(9):1226-1237. Epub 2018 Jun 25.

Belfast HSC Trust, Northern Ireland Regional Genetics Service, Belfast, Northern Ireland.

Malan syndrome is an overgrowth disorder described in a limited number of individuals. We aim to delineate the entity by studying a large group of affected individuals. We gathered data on 45 affected individuals with a molecularly confirmed diagnosis through an international collaboration and compared data to the 35 previously reported individuals. Results indicate that height is > 2 SDS in infancy and childhood but in only half of affected adults. Cardinal facial characteristics include long, triangular face, macrocephaly, prominent forehead, everted lower lip, and prominent chin. Intellectual disability is universally present, behaviorally anxiety is characteristic. Malan syndrome is caused by deletions or point mutations of NFIX clustered mostly in exon 2. There is no genotype-phenotype correlation except for an increased risk for epilepsy with 19p13.2 microdeletions. Variants arose de novo, except in one family in which mother was mosaic. Variants causing Malan and Marshall-Smith syndrome can be discerned by differences in the site of stop codon formation. We conclude that Malan syndrome has a well recognizable phenotype that usually can be discerned easily from Marshall-Smith syndrome but rarely there is some overlap. Differentiation from Sotos and Weaver syndrome can be made by clinical evaluation only.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/humu.23563DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6175110PMC
September 2018

Molecular characterization of breast cancer cell response to metabolic drugs.

Oncotarget 2018 Feb 8;9(11):9645-9660. Epub 2018 Jan 8.

Molecular Oncology and Pathology Lab, Institute of Medical and Molecular Genetics-INGEMM, La Paz University Hospital-IdiPAZ, Madrid, Spain.

Metabolic reprogramming is a hallmark of cancer. It has been described that breast cancer subtypes present metabolism differences and this fact enables the possibility of using metabolic inhibitors as targeted drugs in specific scenarios. In this study, breast cancer cell lines were treated with metformin and rapamycin, showing a heterogeneous response to treatment and leading to cell cycle disruption. The genetic causes and molecular effects of this differential response were characterized by means of SNP genotyping and mass spectrometry-based proteomics. Protein expression was analyzed using probabilistic graphical models, showing that treatments elicit various responses in some biological processes such as transcription. Moreover, flux balance analysis using protein expression values showed that predicted growth rates were comparable with cell viability measurements and suggesting an increase in reactive oxygen species response enzymes due to metformin treatment. In addition, a method to assess flux differences in whole pathways was proposed. Our results show that these diverse approaches provide complementary information and allow us to suggest hypotheses about the response to drugs that target metabolism and their mechanisms of action.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.18632/oncotarget.24047DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5839391PMC
February 2018

Clinical Implementation of Pharmacogenetic Testing in a Hospital of the Spanish National Health System: Strategy and Experience Over 3 Years.

Clin Transl Sci 2018 03 28;11(2):189-199. Epub 2017 Nov 28.

Clinical Pharmacology Department, IdiPAZ, La Paz University Hospital, School of Medicine, Autonomous University of Madrid, Madrid, Spain.

In 2014, we established a pharmacogenetics unit with the intention of facilitating the integration of pharmacogenetic testing into clinical practice. This unit was centered around two main ideas: i) individualization of clinical recommendations, and ii) preemptive genotyping in risk populations. Our unit is based on the design and validation of a single nucleotide polymorphism (SNP) microarray, which has allowed testing of 180 SNPs associated with drug response (PharmArray), and clinical consultation regarding the results. Herein, we report our experience in integrating pharmacogenetic testing into our hospital and we present the results of the 2,539 pharmacogenetic consultation requests received over the past 3 years in our unit. The results demonstrate the feasibility of implementing pharmacogenetic testing in clinical practice within a national health system.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/cts.12526DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5866958PMC
March 2018

Molecular and clinical analysis of ALPL in a cohort of patients with suspicion of Hypophosphatasia.

Am J Med Genet A 2017 Mar 27;173(3):601-610. Epub 2017 Jan 27.

Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, IdiPAZ, Universidad Autónoma de Madrid, Madrid, Spain.

Hypophosphatasia (HPP) is a rare autosomal dominant or recessive metabolic disorder caused by mutations in the tissue nonspecific alkaline phosphatase gene (ALPL). To date, over 300 different mutations in ALPL have been identified. Disease severity is widely variable with severe forms usually manifesting during perinatal and/or infantile periods while mild forms are sometimes only diagnosed in adulthood or remain undiagnosed. Common clinical features of HPP are defects in bone and tooth mineralization along with the biochemical hallmark of decreased serum alkaline phosphatase activity. The incidence of severe HPP is approximately 1 in 300,000 in Europe and 1 in 100,000 in Canada. We present the clinical and molecular findings of 83 probands and 28 family members, referred for genetic analysis due to a clinical and biochemical suspicion of HPP. Patient referrals included those with isolated low alkaline phosphatase levels and without any additional clinical features, to those with a severe skeletal dysplasia. Thirty-six (43.3%) probands were found to have pathogenic ALPL mutations. Eleven previously unreported mutations were identified, thus adding to the ever increasing list of ALPL mutations. Seven of these eleven were inherited in an autosomal dominant manner while the remaining four were observed in the homozygous state. Thus, this study includes a large number of well-characterized patients with hypophosphatasemia which has permitted us to study the genotype:phenotype correlation. Accurate diagnosis of patients with a clinical suspicion of HPP is crucial as not only is the disease life-threatening but the patients may be offered bone targeted enzymatic replacement therapy. © 2017 Wiley Periodicals, Inc.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.37991DOI Listing
March 2017

Clinical and molecular analyses of Beckwith-Wiedemann syndrome: Comparison between spontaneous conception and assisted reproduction techniques.

Am J Med Genet A 2016 10 2;170(10):2740-9. Epub 2016 Aug 2.

Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz-UAM, Madrid, Spain.

Beckwith-Wiedemann syndrome (BWS) is an overgrowth syndrome characterized by an excessive prenatal and postnatal growth, macrosomia, macroglossia, and hemihyperplasia. The molecular basis of this syndrome is complex and heterogeneous, involving genes located at 11p15.5. BWS is correlated with assisted reproductive techniques. BWS in individuals born following assisted reproductive techniques has been found to occur four to nine times higher compared to children with to BWS born after spontaneous conception. Here, we report a series of 187 patients with to BWS born either after assisted reproductive techniques or conceived naturally. Eighty-eight percent of BWS patients born via assisted reproductive techniques had hypomethylation of KCNQ1OT1:TSS-DMR in comparison with 49% for patients with BWS conceived naturally. None of the patients with BWS born via assisted reproductive techniques had hypermethylation of H19/IGF2:IG-DMR, neither CDKN1 C mutations nor patUPD11. We did not find differences in the frequency of multi-locus imprinting disturbances between groups. Patients with BWS born via assisted reproductive techniques had an increased frequency of advanced bone age, congenital heart disease, and decreased frequency of earlobe anomalies but these differences may be explained by the different molecular background compared to those with BWS and spontaneous fertilization. We conclude there is a correlation of the molecular etiology of BWS with the type of conception. © 2016 Wiley Periodicals, Inc.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.37852DOI Listing
October 2016