Publications by authors named "Ioannis Petsagkourakis"

3 Publications

  • Page 1 of 1

Elastic conducting polymer composites in thermoelectric modules.

Nat Commun 2020 Mar 18;11(1):1424. Epub 2020 Mar 18.

Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74, Norrköping, Sweden.

The rapid growth of wearables has created a demand for lightweight, elastic and conformal energy harvesting and storage devices. The conducting polymer poly(3,4-ethylenedioxythiophene) has shown great promise for thermoelectric generators, however, the thick layers of pristine poly(3,4-ethylenedioxythiophene) required for effective energy harvesting are too hard and brittle for seamless integration into wearables. Poly(3,4-ethylenedioxythiophene)-elastomer composites have been developed to improve its mechanical properties, although so far without simultaneously achieving softness, high electrical conductivity, and stretchability. Here we report an aqueously processed poly(3,4-ethylenedioxythiophene)-polyurethane-ionic liquid composite, which combines high conductivity (>140 S cm) with superior stretchability (>600%), elasticity, and low Young's modulus (<7 MPa). The outstanding performance of this organic nanocomposite is the result of favorable percolation networks on the nano- and micro-scale and the plasticizing effect of the ionic liquid. The elastic thermoelectric material is implemented in the first reported intrinsically stretchable organic thermoelectric module.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-020-15135-wDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7080746PMC
March 2020

Thermoelectric materials and applications for energy harvesting power generation.

Sci Technol Adv Mater 2018 14;19(1):836-862. Epub 2018 Nov 14.

Center for Functional Sensor & Actuator (CFSN) and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan.

Thermoelectrics, in particular solid-state conversion of heat to electricity, is expected to be a key energy harvesting technology to power ubiquitous sensors and wearable devices in the future. A comprehensive review is given on the principles and advances in the development of thermoelectric materials suitable for energy harvesting power generation, ranging from organic and hybrid organic-inorganic to inorganic materials. Examples of design and applications are also presented.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/14686996.2018.1530938DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6454408PMC
November 2018

Structurally-driven Enhancement of Thermoelectric Properties within Poly(3,4-ethylenedioxythiophene) thin Films.

Sci Rep 2016 07 29;6:30501. Epub 2016 Jul 29.

Laboratoire de Chimie des Polymères Organiques, CNRS - ENSCPB - Université de Bordeaux - UMR 5629, F-33607 Pessac, France.

Unlabelled: Due to the rising need for clean energy, thermoelectricity has raised as a potential alternative to reduce dependence on fossil fuels. Specifically, thermoelectric devices based on polymers could offer an efficient path for near-room temperature energy harvesters. Thus, control over thermoelectric properties of conducting polymers is crucial and, herein, the structural, electrical and thermoelectric properties of poly(3,4-ethylenedioxythiophene) (PEDOT) thin films doped with p-toluenesulfonate (Tos) molecules were investigated with regards to thin film processing.

Pedot: Tos thin films were prepared by in-situ polymerization of (3,4-ethylenedioxythiophene) monomers in presence of iron(III) p-toluenesulfonate with different co-solvents in order to tune the film structure. While the Seebeck coefficient remained constant, a large improvement in the electrical conductivity was observed for thin films processed with high boiling point additives. The increase of electrical conductivity was found to be solely in-plane mobility-driven. Probing the thin film structure by Grazing Incidence Wide Angle X-ray Scattering has shown that this behavior is dictated by the structural properties of the

Pedot: Tos films; specifically by the thin film crystallinity combined to the preferential edge-on orientation of the PEDOT crystallites. Consequentially enhancement of the power factor from 25 to 78.5 μW/mK(2) has been readily obtained for

Pedot: Tos thin films following this methodology.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/srep30501DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4965772PMC
July 2016