Publications by authors named "Ingo Ruczinski"

159 Publications

Pleiotropy method reveals genetic overlap between orofacial clefts at multiple novel loci from GWAS of multi-ethnic trios.

PLoS Genet 2021 Jul 9;17(7):e1009584. Epub 2021 Jul 9.

Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America.

Based on epidemiologic and embryologic patterns, nonsyndromic orofacial clefts- the most common craniofacial birth defects in humans- are commonly categorized into cleft lip with or without cleft palate (CL/P) and cleft palate alone (CP), which are traditionally considered to be etiologically distinct. However, some evidence of shared genetic risk in IRF6, GRHL3 and ARHGAP29 regions exists; only FOXE1 has been recognized as significantly associated with both CL/P and CP in genome-wide association studies (GWAS). We used a new statistical approach, PLACO (pleiotropic analysis under composite null), on a combined multi-ethnic GWAS of 2,771 CL/P and 611 CP case-parent trios. At the genome-wide significance threshold of 5 × 10-8, PLACO identified 1 locus in 1q32.2 (IRF6) that appears to increase risk for one OFC subgroup but decrease risk for the other. At a suggestive significance threshold of 10-6, we found 5 more loci with compelling candidate genes having opposite effects on CL/P and CP: 1p36.13 (PAX7), 3q29 (DLG1), 4p13 (LIMCH1), 4q21.1 (SHROOM3) and 17q22 (NOG). Additionally, we replicated the recognized shared locus 9q22.33 (FOXE1), and identified 2 loci in 19p13.12 (RAB8A) and 20q12 (MAFB) that appear to influence risk of both CL/P and CP in the same direction. We found locus-specific effects may vary by racial/ethnic group at these regions of genetic overlap, and failed to find evidence of sex-specific differences. We confirmed shared etiology of the two OFC subtypes comprising CL/P, and additionally found suggestive evidence of differences in their pathogenesis at 2 loci of genetic overlap. Our novel findings include 6 new loci of genetic overlap between CL/P and CP; 3 new loci between pairwise OFC subtypes; and 4 loci not previously implicated in OFCs. Our in-silico validation showed PLACO is robust to subtype-specific effects, and can achieve massive power gains over existing approaches for identifying genetic overlap between disease subtypes. In summary, we found suggestive evidence for new genetic regions and confirmed some recognized OFC genes either exerting shared risk or with opposite effects on risk to OFC subtypes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pgen.1009584DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8270211PMC
July 2021

Genome sequencing unveils a regulatory landscape of platelet reactivity.

Nat Commun 2021 06 15;12(1):3626. Epub 2021 Jun 15.

Division of Intramural Research, Population Sciences Branch, National Heart, Lung and Blood Institute, Bethesda, MD, USA.

Platelet aggregation at the site of atherosclerotic vascular injury is the underlying pathophysiology of myocardial infarction and stroke. To build upon prior GWAS, here we report on 16 loci identified through a whole genome sequencing (WGS) approach in 3,855 NHLBI Trans-Omics for Precision Medicine (TOPMed) participants deeply phenotyped for platelet aggregation. We identify the RGS18 locus, which encodes a myeloerythroid lineage-specific regulator of G-protein signaling that co-localizes with expression quantitative trait loci (eQTL) signatures for RGS18 expression in platelets. Gene-based approaches implicate the SVEP1 gene, a known contributor of coronary artery disease risk. Sentinel variants at RGS18 and PEAR1 are associated with thrombosis risk and increased gastrointestinal bleeding risk, respectively. Our WGS findings add to previously identified GWAS loci, provide insights regarding the mechanism(s) by which genetics may influence cardiovascular disease risk, and underscore the importance of rare variant and regulatory approaches to identifying loci contributing to complex phenotypes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-021-23470-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8206369PMC
June 2021

Detecting Gene-Environment Interaction for Maternal Exposures Using Case-Parent Trios Ascertained Through a Case With Non-Syndromic Orofacial Cleft.

Front Cell Dev Biol 2021 16;9:621018. Epub 2021 Apr 16.

Department of Epidemiology, School of Public Health, Johns Hopkins University, Baltimore, MD, United States.

Two large studies of case-parent trios ascertained through a proband with a non-syndromic orofacial cleft (OFC, which includes cleft lip and palate, cleft lip alone, or cleft palate alone) were used to test for possible gene-environment (G × E) interaction between genome-wide markers (both observed and imputed) and self-reported maternal exposure to smoking, alcohol consumption, and multivitamin supplementation during pregnancy. The parent studies were as follows: GENEVA, which included 1,939 case-parent trios recruited largely through treatment centers in Europe, the United States, and Asia, and 1,443 case-parent trios from the Pittsburgh Orofacial Cleft Study (POFC) also ascertained through a proband with an OFC including three major racial/ethnic groups (European, Asian, and Latin American). Exposure rates to these environmental risk factors (maternal smoking, alcohol consumption, and multivitamin supplementation) varied across studies and among racial/ethnic groups, creating substantial differences in power to detect G × E interaction, but the trio design should minimize spurious results due to population stratification. The GENEVA and POFC studies were analyzed separately, and a meta-analysis was conducted across both studies to test for G × E interaction using the 2 df test of gene and G × E interaction and the 1 df test for G × E interaction alone. The 2 df test confirmed effects for several recognized risk genes, suggesting modest G × E effects. This analysis did reveal suggestive evidence for G × Vitamin interaction for on 1p36 located about 3 Mb from , a recognized risk gene. Several regions gave suggestive evidence of G × E interaction in the 1 df test. For example, for G × Smoking interaction, the 1 df test suggested markers in on 9q31.3 from meta-analysis. Markers near also showed suggestive evidence in the 1 df test for G × Alcohol interaction, and rs41117 near (a.k.a. ) also gave suggestive significance in the meta-analysis of the 1 df test for G × Vitamin interaction. While it remains quite difficult to obtain definitive evidence for G × E interaction in genome-wide studies, perhaps due to small effect sizes of individual genes combined with low exposure rates, this analysis of two large case-parent trio studies argues for considering possible G × E interaction in any comprehensive study of complex and heterogeneous disorders such as OFC.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fcell.2021.621018DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8085423PMC
April 2021

A top scoring pairs classifier for recent HIV infections.

Stat Med 2021 05 3;40(11):2604-2612. Epub 2021 Mar 3.

Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.

Accurate incidence estimation of HIV infection from cross-sectional biomarker data is crucial for monitoring the epidemic and determining the impact of HIV prevention interventions. A key feature of cross-sectional incidence testing methods is the mean window period, defined as the average duration that infected individuals are classified as recently infected. Two assays available for cross-sectional incidence estimation, the BED capture immunoassay, and the Limiting Antigen (LAg) Avidity assay, measure a general characteristic of antibody response; performance of these assays can be affected and biased by factors such as viral suppression, resulting in sample misclassification and overestimation of HIV incidence. As availability and use of antiretroviral treatment increase worldwide, algorithms that do not include HIV viral load and are not impacted by viral suppression are needed for cross-sectional HIV incidence estimation. Using a phage display system to quantify antibody binding to over 3300 HIV peptides, we present a classifier based on top scoring peptide pairs that identifies recent infections using HIV antibody responses alone. Based on plasma samples from individuals with known dates of seroconversion, we estimated the mean window period for our classifier to be 217 days (95% confidence interval 183 to 257 days), compared to the estimated mean window period for the LAg-Avidity protocol of 106 days (76 to 146 days). Moreover, each of the four peptide pairs correctly classified more of the recent samples than the LAg-Avidity assay alone at the same classification accuracy for non-recent samples.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/sim.8920DOI Listing
May 2021

Antibody responses to endemic coronaviruses modulate COVID-19 convalescent plasma functionality.

J Clin Invest 2021 04;131(7)

Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

SARS-CoV-2 (CoV2) antibody therapies, including COVID-19 convalescent plasma (CCP), monoclonal antibodies, and hyperimmune globulin, are among the leading treatments for individuals with early COVID-19 infection. The functionality of convalescent plasma varies greatly, but the association of antibody epitope specificities with plasma functionality remains uncharacterized. We assessed antibody functionality and reactivities to peptides across the CoV2 and the 4 endemic human coronavirus (HCoV) genomes in 126 CCP donations. We found strong correlation between plasma functionality and polyclonal antibody targeting of CoV2 spike protein peptides. Antibody reactivity to many HCoV spike peptides also displayed strong correlation with plasma functionality, including pan-coronavirus cross-reactive epitopes located in a conserved region of the fusion peptide. After accounting for antibody cross-reactivity, we identified an association between greater alphacoronavirus NL63 antibody responses and development of highly neutralizing antibodies against CoV2. We also found that plasma preferentially reactive to the CoV2 spike receptor binding domain (RBD), versus the betacoronavirus HKU1 RBD, had higher neutralizing titer. Finally, we developed a 2-peptide serosignature that identifies plasma donations with high anti-spike titer, but that suffer from low neutralizing activity. These results suggest that analysis of coronavirus antibody fine specificities may be useful for selecting desired therapeutics and understanding the complex immune responses elicited by CoV2 infection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1172/JCI146927DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8011893PMC
April 2021

Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program.

Nature 2021 02 10;590(7845):290-299. Epub 2021 Feb 10.

The Broad Institute of MIT and Harvard, Cambridge, MA, USA.

The Trans-Omics for Precision Medicine (TOPMed) programme seeks to elucidate the genetic architecture and biology of heart, lung, blood and sleep disorders, with the ultimate goal of improving diagnosis, treatment and prevention of these diseases. The initial phases of the programme focused on whole-genome sequencing of individuals with rich phenotypic data and diverse backgrounds. Here we describe the TOPMed goals and design as well as the available resources and early insights obtained from the sequence data. The resources include a variant browser, a genotype imputation server, and genomic and phenotypic data that are available through dbGaP (Database of Genotypes and Phenotypes). In the first 53,831 TOPMed samples, we detected more than 400 million single-nucleotide and insertion or deletion variants after alignment with the reference genome. Additional previously undescribed variants were detected through assembly of unmapped reads and customized analysis in highly variable loci. Among the more than 400 million detected variants, 97% have frequencies of less than 1% and 46% are singletons that are present in only one individual (53% among unrelated individuals). These rare variants provide insights into mutational processes and recent human evolutionary history. The extensive catalogue of genetic variation in TOPMed studies provides unique opportunities for exploring the contributions of rare and noncoding sequence variants to phenotypic variation. Furthermore, combining TOPMed haplotypes with modern imputation methods improves the power and reach of genome-wide association studies to include variants down to a frequency of approximately 0.01%.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-021-03205-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7875770PMC
February 2021

Whole genome sequencing identifies novel genetic mutations in patients with eczema herpeticum.

Allergy 2021 Aug 15;76(8):2510-2523. Epub 2021 Mar 15.

Division of Allergy and Clinical Immunology, Johns Hopkins University, Baltimore, MD, USA.

Background: Eczema herpeticum (EH) is a rare complication of atopic dermatitis (AD) caused by disseminated herpes simplex virus (HSV) infection. The role of rare and/or deleterious genetic variants in disease etiology is largely unknown. This study aimed to identify genes that harbor damaging genetic variants associated with HSV infection in AD with a history of recurrent eczema herpeticum (ADEH+).

Methods: Whole genome sequencing (WGS) was performed on 49 recurrent ADEH+ (≥3 EH episodes), 491 AD without a history of eczema herpeticum (ADEH-) and 237 non-atopic control (NA) subjects. Variants were annotated, and a gene-based approach (SKAT-O) was used to identify genes harboring damaging genetic variants associated with ADEH+. Genes identified through WGS were studied for effects on HSV responses and keratinocyte differentiation.

Results: Eight genes were identified in the comparison of recurrent ADEH+to ADEH-and NA subjects: SIDT2, CLEC7A, GSTZ1, TPSG1, SP110, RBBP8NL, TRIM15, and FRMD3. Silencing SIDT2 and RBBP8NL in normal human primary keratinocytes (NHPKs) led to significantly increased HSV-1 replication. SIDT2-silenced NHPKs had decreased gene expression of IFNk and IL1b in response to HSV-1 infection. RBBP8NL-silenced NHPKs had decreased gene expression of IFNk, but increased IL1b. Additionally, silencing SIDT2 and RBBP8NL also inhibited gene expression of keratinocyte differentiation markers keratin 10 (KRT10) and loricrin (LOR).

Conclusion: SIDT2 and RBBP8NL participate in keratinocyte's response to HSV-1 infection. SIDT2 and RBBP8NL also regulate expression of keratinocyte differentiation genes of KRT10 and LOR.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/all.14762DOI Listing
August 2021

Antibody responses to endemic coronaviruses modulate COVID-19 convalescent plasma functionality.

medRxiv 2020 Dec 18. Epub 2020 Dec 18.

Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

COVID-19 convalescent plasma, particularly plasma with high-titer SARS-CoV-2 (CoV2) antibodies, has been successfully used for treatment of COVID-19. The functionality of convalescent plasma varies greatly, but the association of antibody epitope specificities with plasma functionality remains uncharacterized. We assessed antibody functionality and reactivities to peptides across the CoV2 and the four endemic human coronavirus (HCoV) genomes in 126 COVID-19 convalescent plasma donations. We found strong correlation between plasma functionality and polyclonal antibody targeting of CoV2 spike protein peptides. Antibody reactivity to many HCoV spike peptides also displayed strong correlation with plasma functionality, including pan-coronavirus cross-reactive epitopes located in a conserved region of the fusion peptide. After accounting for antibody cross-reactivity, we identified an association between greater alphacoronavirus NL63 antibody responses and development of highly neutralizing antibodies to SARS-CoV-2. We also found that plasma preferentially reactive to the CoV2 receptor binding domain (RBD), versus the betacoronavirus HKU1 RBD, had higher neutralizing titer. Finally, we developed a two-peptide serosignature that identifies plasma donations with high anti-S titer but that suffer from low neutralizing activity. These results suggest that analysis of coronavirus antibody fine specificities may be useful for selecting therapeutic plasma with desired functionalities.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/2020.12.16.20248294DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7755150PMC
December 2020

Transcriptional profile of platelets and iPSC-derived megakaryocytes from whole-genome and RNA sequencing.

Blood 2021 02;137(7):959-968

The GeneSTAR Research Program.

Genome-wide association studies have identified common variants associated with platelet-related phenotypes, but because these variants are largely intronic or intergenic, their link to platelet biology is unclear. In 290 normal subjects from the GeneSTAR Research Study (110 African Americans [AAs] and 180 European Americans [EAs]), we generated whole-genome sequence data from whole blood and RNA sequence data from extracted nonribosomal RNA from 185 induced pluripotent stem cell-derived megakaryocyte (MK) cell lines (platelet precursor cells) and 290 blood platelet samples from these subjects. Using eigenMT software to select the peak single-nucleotide polymorphism (SNP) for each expressed gene, and meta-analyzing the results of AAs and EAs, we identify (q-value < 0.05) 946 cis-expression quantitative trait loci (eQTLs) in derived MKs and 1830 cis-eQTLs in blood platelets. Among the 57 eQTLs shared between the 2 tissues, the estimated directions of effect are very consistent (98.2% concordance). A high proportion of detected cis-eQTLs (74.9% in MKs and 84.3% in platelets) are unique to MKs and platelets compared with peak-associated SNP-expressed gene pairs of 48 other tissue types that are reported in version V7 of the Genotype-Tissue Expression Project. The locations of our identified eQTLs are significantly enriched for overlap with several annotation tracks highlighting genomic regions with specific functionality in MKs, including MK-specific DNAse hotspots, H3K27-acetylation marks, H3K4-methylation marks, enhancers, and superenhancers. These results offer insights into the regulatory signature of MKs and platelets, with significant overlap in genes expressed, eQTLs detected, and enrichment within known superenhancers relevant to platelet biology.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood.2020006115DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7918180PMC
February 2021

Whole genome sequence analysis of pulmonary function and COPD in 19,996 multi-ethnic participants.

Nat Commun 2020 10 14;11(1):5182. Epub 2020 Oct 14.

The Institute for Translational Genomics and Population Sciences, The Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA.

Chronic obstructive pulmonary disease (COPD), diagnosed by reduced lung function, is a leading cause of morbidity and mortality. We performed whole genome sequence (WGS) analysis of lung function and COPD in a multi-ethnic sample of 11,497 participants from population- and family-based studies, and 8499 individuals from COPD-enriched studies in the NHLBI Trans-Omics for Precision Medicine (TOPMed) Program. We identify at genome-wide significance 10 known GWAS loci and 22 distinct, previously unreported loci, including two common variant signals from stratified analysis of African Americans. Four novel common variants within the regions of PIAS1, RGN (two variants) and FTO show evidence of replication in the UK Biobank (European ancestry n ~ 320,000), while colocalization analyses leveraging multi-omic data from GTEx and TOPMed identify potential molecular mechanisms underlying four of the 22 novel loci. Our study demonstrates the value of performing WGS analyses and multi-omic follow-up in cohorts of diverse ancestry.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-020-18334-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7598941PMC
October 2020

Bayesian copy number detection and association in large-scale studies.

BMC Cancer 2020 Sep 7;20(1):856. Epub 2020 Sep 7.

Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.

Background: Germline copy number variants (CNVs) increase risk for many diseases, yet detection of CNVs and quantifying their contribution to disease risk in large-scale studies is challenging due to biological and technical sources of heterogeneity that vary across the genome within and between samples.

Methods: We developed an approach called CNPBayes to identify latent batch effects in genome-wide association studies involving copy number, to provide probabilistic estimates of integer copy number across the estimated batches, and to fully integrate the copy number uncertainty in the association model for disease.

Results: Applying a hidden Markov model (HMM) to identify CNVs in a large multi-site Pancreatic Cancer Case Control study (PanC4) of 7598 participants, we found CNV inference was highly sensitive to technical noise that varied appreciably among participants. Applying CNPBayes to this dataset, we found that the major sources of technical variation were linked to sample processing by the centralized laboratory and not the individual study sites. Modeling the latent batch effects at each CNV region hierarchically, we developed probabilistic estimates of copy number that were directly incorporated in a Bayesian regression model for pancreatic cancer risk. Candidate associations aided by this approach include deletions of 8q24 near regulatory elements of the tumor oncogene MYC and of Tumor Suppressor Candidate 3 (TUSC3).

Conclusions: Laboratory effects may not account for the major sources of technical variation in genome-wide association studies. This study provides a robust Bayesian inferential framework for identifying latent batch effects, estimating copy number, and evaluating the role of copy number in heritable diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12885-020-07304-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7487704PMC
September 2020

A Risk Prediction Model for Mortality Among Smokers in the COPDGene® Study.

Chronic Obstr Pulm Dis 2020 Oct;7(4):346-361

University of Pittsburgh, Pittsburgh, Pennsylvania.

Background: Risk factor identification is a proven strategy in advancing treatments and preventive therapy for many chronic conditions. Quantifying the impact of those risk factors on health outcomes can consolidate and focus efforts on individuals with specific high-risk profiles. Using multiple risk factors and longitudinal outcomes in 2 independent cohorts, we developed and validated a risk score model to predict mortality in current and former cigarette smokers.

Methods: We obtained extensive data on current and former smokers from the COPD Genetic Epidemiology (COPDGene) study at enrollment. Based on physician input and model goodness-of-fit measures, a subset of variables was selected to fit final Weibull survival models separately for men and women. Coefficients and predictors were translated into a point system, allowing for easy computation of mortality risk scores and probabilities. We then used the SubPopulations and InteRmediate Outcome Measures In COPD Study (SPIROMICS) cohort for external validation of our model.

Results: Of 9867 COPDGene participants with standard baseline data, 17.6% died over 10 years of follow-up, and 9074 of these participants had the full set of baseline predictors (standard plus 6-minute walk distance and computed tomography variables) available for full model fits. The average age of participants in the cohort was 60 for both men and women, and the average predicted 10-year mortality risk was 18% for women and 25% for men. Model time-integrated area under the receiver operating characteristic curve statistics demonstrated good predictive model accuracy (0.797 average), validated in the external cohort (0.756 average). Risk of mortality was impacted most by 6-minute walk distance, forced expiratory volume in 1 second and age, for both men and women.

Conclusions: Current and former smokers exhibited a wide range of mortality risk over a 10- year period. Our models can identify higher risk individuals who can be targeted for interventions to reduce risk of mortality, for participants with or without chronic obstructive pulmonary disease (COPD) using current Global initiative for obstructive Lung Disease (GOLD) criteria.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.15326/jcopdf.7.4.2020.0146DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7883903PMC
October 2020

Protective effect of club cell secretory protein (CC-16) on COPD risk and progression: a Mendelian randomisation study.

Thorax 2020 11 24;75(11):934-943. Epub 2020 Aug 24.

Centre for Heart Lung Innovation, St Paul's Hospital, The University of British Columbia, Vancouver, British Columbia, Canada.

Background: The anti-inflammatory pneumoprotein club cell secretory protein-16 (CC-16) is associated with the clinical expression of chronic obstructive pulmonary disease (COPD). We aimed to determine if there is a causal effect of serum CC-16 level on the risk of having COPD and/or its progression using Mendelian randomisation (MR) analysis.

Methods: We performed a genome-wide association meta-analysis for serum CC-16 in two COPD cohorts (Lung Health Study (LHS), n=3850 and ECLIPSE, n=1702). We then used the CC-16-associated single-nucleotide polymorphisms (SNPs) as instrumental variables in MR analysis to identify a causal effect of serum CC-16 on 'COPD risk' (ie, case status in the International COPD Genetics Consortium/UK-Biobank dataset; n=35 735 COPD cases, n=222 076 controls) and 'COPD progression' (ie, annual change in forced expiratory volume in 1 s in LHS and ECLIPSE). We also determined the associations between SNPs associated with CC-16 and gene expression using n=1111 lung tissue samples from the Lung Expression Quantitative Trait Locus Study.

Results: We identified seven SNPs independently associated (p<5×10) with serum CC-16 levels; six of these were novel. MR analysis suggested a protective causal effect of increased serum CC-16 on COPD risk (MR estimate (SE) -0.11 (0.04), p=0.008) and progression (LHS only, MR estimate (SE) 7.40 (3.28), p=0.02). Five of the SNPs were also associated with gene expression in lung tissue (at false discovery rate <0.1) of several genes, including the CC-16-encoding gene .

Conclusion: We have identified several novel genetic variants associated with serum CC-16 level in COPD cohorts. These genetic associations suggest a potential causal effect of serum CC-16 on the risk of having COPD and its progression, the biological basis of which warrants further investigation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/thoraxjnl-2019-214487DOI Listing
November 2020

Genome-wide Enrichment of De Novo Coding Mutations in Orofacial Cleft Trios.

Am J Hum Genet 2020 07 22;107(1):124-136. Epub 2020 Jun 22.

Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA. Electronic address:

Although de novo mutations (DNMs) are known to increase an individual's risk of congenital defects, DNMs have not been fully explored regarding orofacial clefts (OFCs), one of the most common human birth defects. Therefore, whole-genome sequencing of 756 child-parent trios of European, Colombian, and Taiwanese ancestry was performed to determine the contributions of coding DNMs to an individual's OFC risk. Overall, we identified a significant excess of loss-of-function DNMs in genes highly expressed in craniofacial tissues, as well as genes associated with known autosomal dominant OFC syndromes. This analysis also revealed roles for zinc-finger homeobox domain and SOX2-interacting genes in OFC etiology.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2020.05.018DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7332647PMC
July 2020

Genomic integrity of human induced pluripotent stem cells across nine studies in the NHLBI NextGen program.

Stem Cell Res 2020 07 6;46:101803. Epub 2020 May 6.

Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.

Human induced pluripotent stem cell (hiPSC) lines have previously been generated through the NHLBI sponsored NextGen program at nine individual study sites. Here, we examined the structural integrity of 506 hiPSC lines as determined by copy number variations (CNVs). We observed that 149 hiPSC lines acquired 258 CNVs relative to donor DNA. We identified six recurrent regions of CNVs on chromosomes 1, 2, 3, 16 and 20 that overlapped with cancer associated genes. Furthermore, the genes mapping to regions of acquired CNVs show an enrichment in cancer related biological processes (IL6 production) and signaling cascades (JNK cascade & NFκB cascade). The genomic region of instability on chr20 (chr20q11.2) includes transcriptomic signatures for cancer associated genes such as ID1, BCL2L1, TPX2, PDRG1 and HCK. Of these HCK shows statistically significant differential expression between carrier and non-carrier hiPSC lines. Overall, while a low level of genomic instability was observed in the NextGen generated hiPSC lines, the observation of structural instability in regions with known cancer associated genes substantiates the importance of systematic evaluation of genetic variations in hiPSCs before using them as disease/research models.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scr.2020.101803DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7575060PMC
July 2020

Prospective clinical trial examining the impact of genetic variation in FADS1 on the metabolism of linoleic acid- and ɣ-linolenic acid-containing botanical oils.

Am J Clin Nutr 2020 05;111(5):1068-1078

Center for Botanical Lipids and Inflammatory Disease Prevention, Wake Forest School of Medicine,Winston-Salem, NC, USA.

Background: Unexplained heterogeneity in clinical trials has resulted in questions regarding the effectiveness of ɣ-linolenic acid (GLA)-containing botanical oil supplements. This heterogeneity may be explained by genetic variation within the fatty acid desaturase (FADS) gene cluster that is associated with circulating and tissue concentrations of arachidonic acid (ARA) and dihomo-ɣ-linolenic acid (DGLA), both of which may be synthesized from GLA and result in proinflammatory and anti-inflammatory metabolites, respectively.

Objectives: The objective of this study was to prospectively compare the capacity of a non-Hispanic white cohort, stratified by FADS genotype at the key single-nucleotide polymorphism (SNP) rs174537, to metabolize 18-carbon omega-6 (n-6) PUFAs in borage oil (BO) and soybean oil (SO) to GLA, DGLA, and ARA.

Methods: Healthy adults (n = 64) participated in a randomized, double-blind, crossover intervention. Individuals received encapsulated BO (Borago officinalis L.; 37% LA and 23% GLA) or SO [Glycine max (L.) Merr.; 50% LA and 0% GLA] for 4 wk, followed by an 8-wk washout period, before consuming the opposite oil for 4 wk. Serum lipids and markers of inflammation (C-reactive protein) were assessed for both oil types at baseline and during weeks 2 and 4 of the intervention.

Results: SO supplementation failed to alter circulating concentrations of any n-6 long-chain PUFAs. In contrast, a modest daily dose of BO elevated serum concentrations of GLA and DGLA in an rs174537 genotype-dependent manner. In particular, DGLA increased by 57% (95% CI: 0.38, 0.79) in GG genotype individuals, but by 141% (95% CI: 1.03, 2.85) in TT individuals. For ARA, baseline concentrations varied substantially by genotype and increased modestly with BO supplementation, suggesting a key role for FADS variation in the balance of DGLA and ARA.

Conclusions: The results of this study clearly suggest that personalized and population-based approaches considering FADS genetic variation may be necessary to optimize the design of future clinical studies with GLA-containing oils. This trial was registered at clinicaltrials.gov as NCT02337231.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/ajcn/nqaa023DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7198310PMC
May 2020

Association of HLA-DRB1∗09:01 with tIgE levels among African-ancestry individuals with asthma.

J Allergy Clin Immunol 2020 07 22;146(1):147-155. Epub 2020 Jan 22.

Department of Medicine, University of Colorado Denver, Aurora, Colo.

Background: Asthma is a complex chronic inflammatory disease of the airways. Association studies between HLA and asthma were first reported in the 1970s, and yet, the precise role of HLA alleles in asthma is not fully understood. Numerous genome-wide association studies were recently conducted on asthma, but were always limited to simple genetic markers (single nucleotide polymorphisms) and not complex HLA gene polymorphisms (alleles/haplotypes), therefore not capturing the biological relevance of this complex locus for asthma pathogenesis.

Objective: To run the first HLA-centric association study with asthma and specific asthma-related phenotypes in a large cohort of African-ancestry individuals.

Methods: We collected high-density genomics data for the Consortium on Asthma among African-ancestry Populations in the Americas (N = 4993) participants. Using computer-intensive machine-learning attribute bagging methods to infer HLA alleles, and Easy-HLA to infer HLA 5-gene haplotypes, we conducted a high-throughput HLA-centric association study of asthma susceptibility and total serum IgE (tIgE) levels in subjects with and without asthma.

Results: Among the 1607 individuals with asthma, 972 had available tIgE levels, with a mean tIgE level of 198.7 IU/mL. We could not identify any association with asthma susceptibility. However, we showed that HLA-DRB1∗09:01 was associated with increased tIgE levels (P = 8.5 × 10; weighted effect size, 0.51 [0.15-0.87]).

Conclusions: We identified for the first time an HLA allele associated with tIgE levels in African-ancestry individuals with asthma. Our report emphasizes that by leveraging powerful computational machine-learning methods, specific/extreme phenotypes, and population diversity, we can explore HLA gene polymorphisms in depth and reveal the full extent of complex disease associations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jaci.2020.01.011DOI Listing
July 2020

A flexible and nearly optimal sequential testing approach to randomized testing: QUICK-STOP.

Genet Epidemiol 2020 03 11;44(2):139-147. Epub 2019 Nov 11.

Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.

In the analysis of current life science datasets, we often encounter scenarios in which the application of asymptotic theory to hypothesis testing can be problematic. Besides improved asymptotic results, permutation/simulation-based tests are a general approach to address this issue. However, these randomized tests can impose a massive computational burden, for example, in scenarios in which large numbers of statistical tests are computed, and the specified significance level is very small. Stopping rules aim to assess significance with the smallest possible number of draws while controlling the probabilities of errors due to statistical uncertainty. In this communication, we derive a general stopping rule, QUICK-STOP, based on the sequential testing theory that is easy to implement, controls the error probabilities rigorously, and is nearly optimal in terms of expected draws. In a simulation study, we show that our approach outperforms current stopping approaches for general randomized tests by factor 10 and does not impose an additional computational burden. We illustrate our approach by applying our stopping rule to a single-variant analysis of a whole-genome sequencing study for lung function.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/gepi.22268DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7028451PMC
March 2020

COPDGene 2019: Redefining the Diagnosis of Chronic Obstructive Pulmonary Disease.

Chronic Obstr Pulm Dis 2019 Nov;6(5):384-399

Northeastern University, Boston, Massachusetts.

Background: Chronic obstructive pulmonary disease (COPD) remains a major cause of morbidity and mortality. Present-day diagnostic criteria are largely based solely on spirometric criteria. Accumulating evidence has identified a substantial number of individuals without spirometric evidence of COPD who suffer from respiratory symptoms and/or increased morbidity and mortality. There is a clear need for an expanded definition of COPD that is linked to physiologic, structural (computed tomography [CT]) and clinical evidence of disease. Using data from the COPD Genetic Epidemiology study (COPDGene), we hypothesized that an integrated approach that includes environmental exposure, clinical symptoms, chest CT imaging and spirometry better defines disease and captures the likelihood of progression of respiratory obstruction and mortality.

Methods: Four key disease characteristics - environmental exposure (cigarette smoking), clinical symptoms (dyspnea and/or chronic bronchitis), chest CT imaging abnormalities (emphysema, gas trapping and/or airway wall thickening), and abnormal spirometry - were evaluated in a group of 8784 current and former smokers who were participants in COPDGene Phase 1. Using these 4 disease characteristics, 8 categories of participants were identified and evaluated for odds of spirometric disease progression (FEV > 350 ml loss over 5 years), and the hazard ratio for all-cause mortality was examined.

Results: Using smokers without symptoms, CT imaging abnormalities or airflow obstruction as the reference population, individuals were classified as Possible COPD, Probable COPD and Definite COPD. Current Global initiative for obstructive Lung Disease (GOLD) criteria would diagnose 4062 (46%) of the 8784 study participants with COPD. The proposed COPDGene 2019 diagnostic criteria would add an additional 3144 participants. Under the new criteria, 82% of the 8784 study participants would be diagnosed with Possible, Probable or Definite COPD. These COPD groups showed increased risk of disease progression and mortality. Mortality increased in patients as the number of their COPD characteristics increased, with a maximum hazard ratio for all cause-mortality of 5.18 (95% confidence interval [CI]: 4.15-6.48) in those with all 4 disease characteristics.

Conclusions: A substantial portion of smokers with respiratory symptoms and imaging abnormalities do not manifest spirometric obstruction as defined by population normals. These individuals are at significant risk of death and spirometric disease progression. We propose to redefine the diagnosis of COPD through an integrated approach using environmental exposure, clinical symptoms, CT imaging and spirometric criteria. These expanded criteria offer the potential to stimulate both current and future interventions that could slow or halt disease progression in patients before disability or irreversible lung structural changes develop.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.15326/jcopdf.6.5.2019.0149DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7020846PMC
November 2019

The pharmacogenomics of inhaled corticosteroids and lung function decline in COPD.

Eur Respir J 2019 12 4;54(6). Epub 2019 Dec 4.

The University of British Columbia Center for Heart Lung Innovation, St Paul's Hospital Vancouver, BC, Canada.

Inhaled corticosteroids (ICS) are widely prescribed for patients with chronic obstructive pulmonary disease (COPD), yet have variable outcomes and adverse reactions, which may be genetically determined. The primary aim of the study was to identify the genetic determinants for forced expiratory volume in 1 s (FEV) changes related to ICS therapy.In the Lung Health Study (LHS)-2, 1116 COPD patients were randomised to the ICS triamcinolone acetonide (n=559) or placebo (n=557) with spirometry performed every 6 months for 3 years. We performed a pharmacogenomic genome-wide association study for the genotype-by-ICS treatment effect on 3 years of FEV changes (estimated as slope) in 802 genotyped LHS-2 participants. Replication was performed in 199 COPD patients randomised to the ICS, fluticasone or placebo.A total of five loci showed genotype-by-ICS interaction at p<5×10; of these, single nucleotide polymorphism (SNP) rs111720447 on chromosome 7 was replicated (discovery p=4.8×10, replication p=5.9×10) with the same direction of interaction effect. ENCODE (Encyclopedia of DNA Elements) data revealed that in glucocorticoid-treated (dexamethasone) A549 alveolar cell line, glucocorticoid receptor binding sites were located near SNP rs111720447. In stratified analyses of LHS-2, genotype at SNP rs111720447 was significantly associated with rate of FEV decline in patients taking ICS (C allele β 56.36 mL·year, 95% CI 29.96-82.76 mL·year) and in patients who were assigned to placebo, although the relationship was weaker and in the opposite direction to that in the ICS group (C allele β -27.57 mL·year, 95% CI -53.27- -1.87 mL·year).The study uncovered genetic factors associated with FEV changes related to ICS in COPD patients, which may provide new insight on the potential biology of steroid responsiveness in COPD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1183/13993003.00521-2019DOI Listing
December 2019

Replicated methylation changes associated with eczema herpeticum and allergic response.

Clin Epigenetics 2019 08 23;11(1):122. Epub 2019 Aug 23.

University of Colorado, Denver, CO, USA.

Background: Although epigenetic mechanisms are important risk factors for allergic disease, few studies have evaluated DNA methylation differences associated with atopic dermatitis (AD), and none has focused on AD with eczema herpeticum (ADEH+). We will determine how methylation varies in AD individuals with/without EH and associated traits. We modeled differences in genome-wide DNA methylation in whole blood cells from 90 ADEH+, 83 ADEH-, and 84 non-atopic, healthy control subjects, replicating in 36 ADEH+, 53 ADEH-, and 55 non-atopic healthy control subjects. We adjusted for cell-type composition in our models and used genome-wide and candidate-gene approaches.

Results: We replicated one CpG which was significantly differentially methylated by severity, with suggestive replication at four others showing differential methylation by phenotype or severity. Not adjusting for eosinophil content, we identified 490 significantly differentially methylated CpGs (ADEH+ vs healthy controls, genome-wide). Many of these associated with severity measures, especially eosinophil count (431/490 sites).

Conclusions: We identified a CpG in IL4 associated with serum tIgE levels, supporting a role for Th2 immune mediating mechanisms in AD. Changes in eosinophil level, a measure of disease severity, are associated with methylation changes, providing a potential mechanism for phenotypic changes in immune response-related traits.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13148-019-0714-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6706929PMC
August 2019

Comprehensive Profiling of HIV Antibody Evolution.

Cell Rep 2019 04;27(5):1422-1433.e4

Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. Electronic address:

This study evaluates HIV antibody responses and their evolution during the course of HIV infection. A phage display system is used to characterize antibody binding to >3,300 HIV peptides in 57 adults with early- to late-stage infection. We find that the number of unique epitopes targeted ("antibody breadth") increases early in infection and then stabilizes or declines. A decline in antibody breadth 9 months to 2 years after infection is associated with subsequent antiretroviral treatment (ART) initiation, and a faster decline in antibody breadth is associated with a shorter time to ART initiation. We identify 266 peptides with increasing antibody reactivity over time and 43 peptides with decreasing reactivity over time. These data are used to design a prototype four-peptide "serosignature" to predict duration of HIV infection. We also demonstrate that epitope engineering can be used to optimize peptide binding properties for applications such as cross-sectional HIV incidence estimation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2019.03.097DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6519133PMC
April 2019

Evolution of Hominin Polyunsaturated Fatty Acid Metabolism: From Africa to the New World.

Genome Biol Evol 2019 05;11(5):1417-1430

Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland.

The metabolic conversion of dietary omega-3 and omega-6 18 carbon (18C) to long chain (>20 carbon) polyunsaturated fatty acids (LC-PUFAs) is vital for human life. The rate-limiting steps of this process are catalyzed by fatty acid desaturase (FADS) 1 and 2. Therefore, understanding the evolutionary history of the FADS genes is essential to our understanding of hominin evolution. The FADS genes have two haplogroups, ancestral and derived, with the derived haplogroup being associated with more efficient LC-PUFA biosynthesis than the ancestral haplogroup. In addition, there is a complex global distribution of these haplogroups that is suggestive of Neanderthal introgression. We confirm that Native American ancestry is nearly fixed for the ancestral haplogroup, and replicate a positive selection signal in Native Americans. This positive selection potentially continued after the founding of the Americas, although simulations suggest that the timing is dependent on the allele frequency of the ancestral Beringian population. We also find that the Neanderthal FADS haplotype is more closely related to the derived haplogroup and the Denisovan clusters closer to the ancestral haplogroup. Furthermore, the derived haplogroup has a time to the most recent common ancestor of 688,474 years before present. These results support an ancient polymorphism, as opposed to Neanderthal introgression, forming in the FADS region during the Pleistocene with possibly differential selection pressures on both haplogroups. The near fixation of the ancestral haplogroup in Native American ancestry calls for future studies to explore the potential health risk of associated low LC-PUFA levels in these populations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/gbe/evz071DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6514828PMC
May 2019

Association study in African-admixed populations across the Americas recapitulates asthma risk loci in non-African populations.

Nat Commun 2019 02 20;10(1):880. Epub 2019 Feb 20.

National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.

Asthma is a complex disease with striking disparities across racial and ethnic groups. Despite its relatively high burden, representation of individuals of African ancestry in asthma genome-wide association studies (GWAS) has been inadequate, and true associations in these underrepresented minority groups have been inconclusive. We report the results of a genome-wide meta-analysis from the Consortium on Asthma among African Ancestry Populations (CAAPA; 7009 asthma cases, 7645 controls). We find strong evidence for association at four previously reported asthma loci whose discovery was driven largely by non-African populations, including the chromosome 17q12-q21 locus and the chr12q13 region, a novel (and not previously replicated) asthma locus recently identified by the Trans-National Asthma Genetic Consortium (TAGC). An additional seven loci reported by TAGC show marginal evidence for association in CAAPA. We also identify two novel loci (8p23 and 8q24) that may be specific to asthma risk in African ancestry populations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-019-08469-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6382865PMC
February 2019

Identification of interactions of binary variables associated with survival time using survivalFS.

Arch Toxicol 2019 03 29;93(3):585-602. Epub 2019 Jan 29.

Mathematical Institute, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.

Many medical studies aim to identify factors associated with a time to an event such as survival time or time to relapse. Often, in particular, when binary variables are considered in such studies, interactions of these variables might be the actual relevant factors for predicting, e.g., the time to recurrence of a disease. Testing all possible interactions is often not possible, so that procedures such as logic regression are required that avoid such an exhaustive search. In this article, we present an ensemble method based on logic regression that can cope with the instability of the regression models generated by logic regression. This procedure called survivalFS also provides measures for quantifying the importance of the interactions forming the logic regression models on the time to an event and for the assessment of the individual variables that take the multivariate data structure into account. In this context, we introduce a new performance measure, which is an adaptation of Harrel's concordance index. The performance of survivalFS and the proposed importance measures is evaluated in a simulation study as well as in an application to genotype data from a urinary bladder cancer study. Furthermore, we compare the performance of survivalFS and its importance measures for the individual variables with the variable importance measure used in random survival forests, a popular procedure for the analysis of survival data. These applications show that survivalFS is able to identify interactions associated with time to an event and to outperform random survival forests.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00204-019-02398-6DOI Listing
March 2019

Author Correction: Assembly of a pan-genome from deep sequencing of 910 humans of African descent.

Nat Genet 2019 02;51(2):364

Pulmonary and Critical Care Medicine, Morehouse School of Medicine, Atlanta, GA, USA.

In the version of this article initially published, the statement "there are no pan-genomes for any other animal or plant species" was incorrect. The statement has been corrected to "there are no reported pan-genomes for any other animal species, to our knowledge." We thank David Edwards for bringing this error to our attention. The error has been corrected in the HTML and PDF versions of the article.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-018-0335-1DOI Listing
February 2019

Genome-wide association study in two populations to determine genetic variants associated with Toxoplasma gondii infection and relationship to schizophrenia risk.

Prog Neuropsychopharmacol Biol Psychiatry 2019 06 2;92:133-147. Epub 2019 Jan 2.

Department of Epidemiology, Rollins School of Public Health, 1518 Clifton Rd., Atlanta, GA 30322, United States. Electronic address:

T. gondii (TOXO) infects over one billion people worldwide, yet the literature lacks a Genome Wide Association Study (GWAS) focused on genetic variants controlling the persistence of TOXO infection. To identify putative T. gondii susceptibility genes, we performed a GWAS using IgG seropositivity as the outcome variable in a discovery sample (n = 790) from an Ashkenazi dataset, and a second sample of predominately African Americans (The Grady Trauma Project, n = 285). We also performed a meta-analyses of the 2 cohorts. None of the SNPs in these analyses was statistically significant after Bonferroni correction for multiple comparisons. In the Ashkenazi population, the gene region of CHIA (chitinase) showed the most nominally significant association with TOXO. Prior studies have shown that the production of chitinase by macrophages in the brain responding to TOXO infection is crucial for controlling the burden of T. gondii cysts. We found a surprising number of genes involved in neurodevelopment and psychiatric disorders among our top hits even though our outcome variable was TOXO infection. In the meta-analysis combining the Ashkenazi and Grady Trauma Project samples, there was enrichment for genes implicated in schizophrenia spectrum disorders (p < .05). Upon limiting our sample to those without mental illness, two schizophrenia related genes (CNTNAP2, GABAR2) still had significant TOXO-associated variants at the p < .05 level, but did not pass the genome wide significance threshold after correction for multiple comparisons. Using Ingenuity Systems molecular network analysis, we identified molecular nodes suggesting that while different genetic variants associated with TOXO in the two population samples, the molecular pathways for TOXO susceptibility nevertheless converged on common pathways. Molecular nodes in these common pathways included NOTCH1, CD44, and RXRA. Prior studies show that CD44 participates in TOXO-induced immunopathology and that RXRA is instrumental in regulating T-helper immune responses. These data provide new insights into the pathophysiology of this common neurotropic parasite.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pnpbp.2018.12.019DOI Listing
June 2019

Detection of rare disease variants in extended pedigrees using RVS.

Bioinformatics 2019 07;35(14):2509-2511

Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health.

Summary: Family-based sequencing studies enable researchers to identify highly penetrant genetic variants too rare to be tested in conventional case-control studies, by studying co-segregation of variant and disease phenotypes. When multiple affected subjects in a family are sequenced, the probability that a variant or a set of variants is shared identical-by-descent by some or all affected relatives provides evidence against the null hypothesis of complete absence of linkage and association. The Rare Variant Sharing software package RVS implements a suite of tools to assess association and linkage between rare genetic variants and a dichotomous disease indicator in family pedigrees.

Availability And Implementation: RVS is available as open source software from the Bioconductor webpage at https://bioconductor.org/packages/release/bioc/html/RVS.html.

Supplementary Information: Supplementary data are available at Bioinformatics online.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/bioinformatics/bty976DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6612888PMC
July 2019