Publications by authors named "Inge A M Snoeren"

3 Publications

  • Page 1 of 1

Heterogeneous bone-marrow stromal progenitors drive myelofibrosis via a druggable alarmin axis.

Cell Stem Cell 2021 Apr 9;28(4):637-652.e8. Epub 2020 Dec 9.

Department of Hematology, Erasmus Medical Center, Rotterdam 3015GD, the Netherlands; Department of Cell Biology, Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany; Oncode Institute, Erasmus Medical Center, Rotterdam 3015GD, the Netherlands. Electronic address:

Functional contributions of individual cellular components of the bone-marrow microenvironment to myelofibrosis (MF) in patients with myeloproliferative neoplasms (MPNs) are incompletely understood. We aimed to generate a comprehensive map of the stroma in MPNs/MFs on a single-cell level in murine models and patient samples. Our analysis revealed two distinct mesenchymal stromal cell (MSC) subsets as pro-fibrotic cells. MSCs were functionally reprogrammed in a stage-dependent manner with loss of their progenitor status and initiation of differentiation in the pre-fibrotic and acquisition of a pro-fibrotic and inflammatory phenotype in the fibrotic stage. The expression of the alarmin complex S100A8/S100A9 in MSC marked disease progression toward the fibrotic phase in murine models and in patient stroma and plasma. Tasquinimod, a small-molecule inhibiting S100A8/S100A9 signaling, significantly ameliorated the MPN phenotype and fibrosis in JAK2V617F-mutated murine models, highlighting that S100A8/S100A9 is an attractive therapeutic target in MPNs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.stem.2020.11.004DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8024900PMC
April 2021

Increased CXCL4 expression in hematopoietic cells links inflammation and progression of bone marrow fibrosis in MPN.

Blood 2020 10;136(18):2051-2064

Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, The Netherlands.

Primary myelofibrosis (PMF) is a myeloproliferative neoplasm (MPN) that leads to progressive bone marrow (BM) fibrosis. Although the cellular mutations involved in the pathogenesis of PMF have been extensively investigated, the sequential events that drive stromal activation and fibrosis by hematopoietic-stromal cross-talk remain elusive. Using an unbiased approach and validation in patients with MPN, we determined that the differential spatial expression of the chemokine CXCL4/platelet factor-4 marks the progression of fibrosis. We show that the absence of hematopoietic CXCL4 ameliorates the MPN phenotype, reduces stromal cell activation and BM fibrosis, and decreases the activation of profibrotic pathways in megakaryocytes, inflammation in fibrosis-driving cells, and JAK/STAT activation in both megakaryocytes and stromal cells in 3 murine PMF models. Our data indicate that higher CXCL4 expression in MPN has profibrotic effects and is a mediator of the characteristic inflammation. Therefore, targeting CXCL4 might be a promising strategy to reduce inflammation in PMF.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood.2019004095DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7678060PMC
October 2020

Rps14, Csnk1a1 and miRNA145/miRNA146a deficiency cooperate in the clinical phenotype and activation of the innate immune system in the 5q- syndrome.

Leukemia 2019 07 16;33(7):1759-1772. Epub 2019 Jan 16.

Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, RWTH Aachen University, Aachen, Germany.

RPS14, CSNK1A1, and miR-145 are universally co-deleted in the 5q- syndrome, but mouse models of each gene deficiency recapitulate only a subset of the composite clinical features. We analyzed the combinatorial effect of haploinsufficiency for Rps14, Csnk1a1, and miRNA-145, using mice with genetically engineered, conditional heterozygous inactivation of Rps14 and Csnk1a1 and stable knockdown of miR-145/miR-146a. Combined Rps14/Csnk1a1/miR-145/146a deficiency recapitulated the cardinal features of the 5q- syndrome, including (1) more severe anemia with faster kinetics than Rps14 haploinsufficiency alone and (2) pathognomonic megakaryocyte morphology. Macrophages, regulatory cells of erythropoiesis and the innate immune response, were significantly increased in Rps14/Csnk1a1/miR-145/146a deficient mice as well as in 5q- syndrome patient bone marrows and showed activation of the innate immune response, reflected by increased expression of S100A8, and decreased phagocytic function. We demonstrate that Rps14/Csnk1a1/miR-145 and miR-146a deficient macrophages alter the microenvironment and induce S100A8 expression in the mesenchymal stem cell niche. The increased S100A8 expression in the mesenchymal niche was confirmed in 5q- syndrome patients. These data indicate that intrinsic defects of the 5q- syndrome hematopoietic stem cell directly alter the surrounding microenvironment, which in turn affects hematopoiesis as an extrinsic mechanism.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41375-018-0350-3DOI Listing
July 2019