Publications by authors named "In Jun Yeo"

26 Publications

  • Page 1 of 1

Macrocyclic Immunoproteasome Inhibitors as a Potential Therapy for Alzheimer's Disease.

J Med Chem 2021 Aug 26;64(15):10934-10950. Epub 2021 Jul 26.

Department of Pharmaceutical Sciences, University of Kentucky, 789 South Limestone, Lexington, Kentucky 40536-0596, United States.

Previously, we reported that immunoproteasome (iP)-targeting linear peptide epoxyketones improve cognitive function in mouse models of Alzheimer's disease (AD) in a manner independent of amyloid β. However, these compounds' clinical prospect for AD is limited due to potential issues, such as poor brain penetration and metabolic instability. Here, we report the development of iP-selective macrocyclic peptide epoxyketones prepared by a ring-closing metathesis reaction between two terminal alkenes attached at the P2 and P3/P4 positions of linear counterparts. We show that a lead macrocyclic compound DB-60 () effectively inhibits the catalytic activity of iP in ABCB1-overexpressing cells (IC: 105 nM) and has metabolic stability superior to its linear counterpart. DB-60 () also lowered the serum levels of IL-1α and ameliorated cognitive deficits in Tg2576 mice. The results collectively suggest that macrocyclic peptide epoxyketones have improved CNS drug properties than their linear counterparts and offer promising potential as an AD drug candidate.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.1c00291DOI Listing
August 2021

Amyloidogenic, neuroinflammatory and memory dysfunction effects of HIV-1 gp120.

Arch Pharm Res 2021 Jul 23;44(7):689-701. Epub 2021 Jul 23.

College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea.

Human immunodeficiency virus 1 (HIV-1) infection can cause several HIV-associated neurocognitive disorders a variety of neurological impairments characterized by the loss of cortical and subcortical neurons and decreased cognitive and motor function. HIV-1 gp120, the major envelope glycoprotein on viral particles, acts as a binding protein for viral entry and is known to be an agent of neuronal cell death. To determine the mechanism of HIV-1 gp120-induced memory dysfunction, we performed mouse intracerebroventricular (i.c.v.) infusion with HIV-1 gp120 protein (300 ng per mouse) and investigated memory impairment and amyloidogenesis. Infusion of the HIV-1 gp120 protein induced memory dysfunction, which was evaluated using passive avoidance and water maze tests. Infusion of HIV-1 gp120 induced neuroinflammation, such as the release of iNOS and COX-2 and the activation of astrocytes and microglia and increased the mRNA and protein levels of IL-6, ICAM-1, M-CSF, TIM, and IL-2. In particular, we found that the infusion of HIV-1 gp120 induced the accumulation of amyloid plaques and signs of elevated amyloidogenesis, such as increased expression of amyloid precursor protein and BACE1 and increased β-secretase activity. Therefore, these studies suggest that HIV-1 gp120 may induce memory impairment through Aβ accumulation and neuroinflammation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12272-021-01340-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8300079PMC
July 2021

Inhibition of Chitinase-3-like-1 by K284-6111 Reduces Atopic Skin Inflammation via Repressing Lactoferrin.

Immune Netw 2021 Jun 29;21(3):e22. Epub 2021 Jun 29.

College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Korea.

Chitinase-3-like-1 (CHI3L1) is known to induce inflammation in the progression of allergic diseases. Previous our studies revealed that 2-({3-[2-(1-cyclohexen-1-yl)ethyl]-6,7-dimethoxy-4-oxo-3,4-dihydro-2-quinazolinyl}sulfanyl)-N-(4-ethylphenyl)butanamide (K284-6111; K284), the CHI3L1 inhibiting compound, has the anti-inflammatory effect on neuroinflammation. In this study, we investigated that K284 treatment could inhibit the development of atopic dermatitis (AD). To identify the effect of K284, we used phthalic anhydride (5% PA)-induced AD animal model and reconstructed human skin model. We analyzed the expression of AD-related cytokine mediators and NF-κB signaling by Western blotting, ELISA and quantitative real-time PCR. Histological analysis showed that K284 treatment suppressed PA-induced epidermal thickening and infiltration of mast cells. K284 treatment also reduced PA-induced release of inflammatory cytokines. In addition, K284 treatment inhibited the expression of NF-κB activity in PA-treated skin tissues and TNF-α and IFN-γ-treated HaCaT cells. Protein-association network analysis indicated that CHI3L1 is associated with lactoferrin (LTF). LTF was elevated in PA-treated skin tissues and TNF-α and IFN-γ-induced HaCaT cells. However, this expression was reduced by K284 treatment. Knockdown of LTF decreased the expression of inflammatory cytokines in TNF-α and IFN-γ-induced HaCaT cells. Moreover, anti-LTF antibody treatment alleviated AD development in PA-induced AD model. Our data demonstrate that CHI3L1 targeting K284 reduces AD-like skin inflammation and K284 could be a promising therapeutic agent for AD by inhibition of LTF expression.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4110/in.2021.21.e22DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8263211PMC
June 2021

Botulinum Toxin A Ameliorates Neuroinflammation in the MPTP and 6-OHDA-Induced Parkinson's Disease Models.

Biomol Ther (Seoul) 2021 06 3. Epub 2021 Jun 3.

College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28644, Republic of Korea.

Recently, increasing evidence suggests that neuroinflammation may be a critical factor in the development of Parkinson's disease (PD) in addition to the ratio of acetylcholine/dopamine because dopaminergic neurons are particularly vulnerable to inflammatory attack. In this study, we investigated whether botulinum neurotoxin A (BoNT-A) was effective for the treatment of PD through its anti-neuroinflammatory effects and the modulation of acetylcholine and dopamine release. We found that BoNT-A ameliorated MPTP and 6-OHDA-induced PD progression, reduced acetylcholine release, levels of IL-1β, IL-6 and TNF-α as well as GFAP expression, but enhanced dopamine release and tyrosine hydroxylase expression. These results indicated that BoNT-A had beneficial effects on MPTP or 6-OHDA-induced PD-like behavior impairments via its anti-neuroinflammation properties, recovering dopamine, and reducing acetylcholine release.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4062/biomolther.2021.077DOI Listing
June 2021

Antifungal drug miconazole ameliorated memory deficits in a mouse model of LPS-induced memory loss through targeting iNOS.

Cell Death Dis 2020 08 14;11(8):623. Epub 2020 Aug 14.

College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea.

Alzheimer's disease (AD) is closely related to neuroinflammation, and the increase in inflammatory cytokine generation and inducible nitric oxide synthase (iNOS) expression in the brain of a patient with AD is well known. Excessive cytokines can stimulate iNOS in microglia and astroglia and overproduce nitric oxide, which can be toxic to neurons. The disease-gene-drug network analysis based on the GWAS/OMIM/DEG records showed that miconazole (MCZ) affected AD through interactions with NOS. Inhibiting iNOS can reduce neuroinflammation, thus preventing AD progression. To investigate the prophylactic role of antifungal agent in the AD development, a lipopolysaccharide-induced memory disorder mouse model was used, and cognitive function was assessed by Morris water maze test and passive avoidance test. MCZ treatment significantly attenuated cognitive impairment, suppressed iNOS and cyclooxygenase-2 expression, and activation of astrocyte and microglial BV2 cells, as well as reduced cytokine levels in the brains and lipopolysaccharide-treated astrocytes and microglia BV2 cells. In further mechanism studies, Pull-down assay and iNOS luciferase activity data showed that MCZ binds to iNOS and inhibited transcriptional activity. Our results suggest that MCZ is useful for ameliorating the neuroinflammation-mediated AD progression by blocking iNOS expression.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41419-020-2619-5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7429861PMC
August 2020

LMP2 Inhibitors as a Potential Treatment for Alzheimer's Disease.

J Med Chem 2020 04 30;63(7):3763-3783. Epub 2020 Mar 30.

Department of Pharmaceutical Sciences, University of Kentucky, 789 South Limestone, Lexington, Kentucky 40536-0596, United States.

The immunoproteasome (iP), an inducible proteasome variant harboring three immunosubunits, low molecular mass polypeptide-2 (LMP2), multicatalytic endopeptidase complex subunit-1, and low molecular mass polypeptide-7 (LMP7), is involved in multiple facets of inflammatory responses. We recently reported that YU102, a dual inhibitor of the iP subunit LMP2 and the constitutive proteasome catalytic subunit β1, ameliorates cognitive impairments in mouse models of Alzheimer's disease (AD) independently of amyloid deposits. To investigate whether inhibition of LMP2 is sufficient to improve the cognitive functions of AD mice, here we prepared 37 YU102 analogues and identified a potent LMP2 inhibitor DB-310 () (IC: 80.6 nM) with improved selectivity and permeability in cells overexpressing ABCB1 transporters. We show that DB-310 induces suppression of IL-1α production in microglia cells and improves cognitive functions in the Tg2576 transgenic mouse model of AD. This study supports that inhibition of LMP2 is a promising therapeutic strategy for treatment of AD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.0c00416DOI Listing
April 2020

Prevention of multiple system atrophy using human bone marrow-derived mesenchymal stem cells by reducing polyamine and cholesterol-induced neural damages.

Stem Cell Res Ther 2020 03 4;11(1):63. Epub 2020 Mar 4.

College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsangmyeong1-ro, Heungdeok-gu, Cheongju, Chungbuk, 361-951, Republic of Korea.

Background: Multiple system atrophy (MSA) is a sporadic neurodegenerative disorder of unknown etiology, but is closely associated with damage to dopaminergic neurons. MSA progression is rapid. Hence, long-term drug treatments do not have any therapeutic benefits. We assessed the inhibitory effect of mesenchymal stem cells (MSCs) on double-toxin-induced dopaminergic neurodegenerative MSA.

Results: Behavioral disorder was significantly improved and neurodegeneration was prevented following MSC transplantation. Proteomics revealed lower expression of polyamine modulating factor-binding protein 1 (PMFBP1) and higher expression of 3-hydroxymethyl-3-methylglutaryl-CoA lyase (HMGCL), but these changes were reversed after MSC transplantation. In the in vitro study, the 6-OHDA-induced effects were reversed following co-culture with MSC. However, PMFBP1 knockdown inhibited the recovery effect due to the MSCs. Furthermore, HMGCL expression was decreased following co-culture with MSCs, but treatment with recombinant HMGCL protein inhibited the recovery effects due to MSCs.

Conclusions: These data indicate that MSCs protected against neuronal loss in MSA by reducing polyamine- and cholesterol-induced neural damage.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13287-020-01590-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7055099PMC
March 2020

PEGylated Erythropoietin Protects against Brain Injury in the MCAO-Induced Stroke Model by Blocking NF-κB Activation.

Biomol Ther (Seoul) 2020 Mar;28(2):152-162

College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Republic of Korea.

Cerebral ischemia exhibits a multiplicity of pathophysiological mechanisms. During ischemic stroke, the reactive oxygen species (ROS) concentration rises to a peak during reperfusion, possibly underlying neuronal death. Recombinant human erythropoietin (EPO) supplementation is one method of treating neurodegenerative disease by reducing the generation of ROS. We investigated the therapeutic effect of PEGylated EPO (P-EPO) on ischemic stroke. Mice were administered P-EPO (5,000 U/kg) via intravenous injection, and middle cerebral artery occlusion (MCAO) followed by reperfusion was performed to induce ischemic stroke. P-EPO ameliorated MCAO-induced neurological deficit and reduced behavioral disorder and the infarct area. Moreover, lipid peroxidation, expression of inflammatory proteins (cyclooxygenase-2 and inducible nitric oxide synthase), and cytokine levels in blood were reduced by the P-EPO treatment. In addition, higher activation of nuclear factor kappa B (NF-κB) was found in the brain after MCAO, but NF-κB activation was reduced in the P-EPO-injected group. Treatment with the NF-κB inhibitor PS-1145 (5 mg/kg) abolished the P-EPO-induced reduction of infarct volume, neuronal death, neuroinflammation, and oxidative stress. Moreover, P-EPO was more effective than EPO (5,000 U/kg) and similar to a tissue plasminogen activator (10 mg/kg). An study revealed that P-EPO (25, 50, and 100 U/mL) treatment protected against rotenone (100 nM)-induced neuronal loss, neuroinflammation, oxidative stress, and NF-κB activity. These results indicate that the administration of P-EPO exerted neuroprotective effects on cerebral ischemia damage through anti-oxidant and anti-inflammatory properties by inhibiting NF-κB activation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4062/biomolther.2019.147DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7059808PMC
March 2020

A dual inhibitor of the proteasome catalytic subunits LMP2 and Y attenuates disease progression in mouse models of Alzheimer's disease.

Sci Rep 2019 12 5;9(1):18393. Epub 2019 Dec 5.

Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, 40536-0596, USA.

The immunoproteasome (iP) is a variant of the constitutive proteasome (cP) that is abundantly expressed in immune cells which can also be induced in somatic cells by cytokines such as TNF-α or IFN-γ. Accumulating evidence support that the iP is closely linked to multiple facets of inflammatory response, eventually leading to the development of several iP inhibitors as potential therapeutic agents for autoimmune diseases. Recent studies also found that the iP is upregulated in reactive glial cells surrounding amyloid β (Aβ) deposits in brains of Alzheimer's disease (AD) patients, but the role it plays in the pathogenesis of AD remains unclear. In this study, we investigated the effects of several proteasome inhibitors on cognitive function in AD mouse models and found that YU102, a dual inhibitor of the iP catalytic subunit LMP2 and the cP catalytic subunit Y, ameliorates cognitive impairments in AD mouse models without affecting Aβ deposition. The data obtained from our investigation revealed that YU102 suppresses the secretion of inflammatory cytokines from microglial cells. Overall, this study indicates that there may exist a potential link between LMP2/Y and microglia-mediated neuroinflammation and that inhibition of these subunits may offer a new therapeutic strategy for AD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-019-54846-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6895163PMC
December 2019

Deletion of Chitinase-3-like 1 accelerates stroke development through enhancement of Neuroinflammation by STAT6-dependent M2 microglial inactivation in Chitinase-3-like 1 knockout mice.

Exp Neurol 2020 01 24;323:113082. Epub 2019 Oct 24.

College of Pharmacy and Medical Research Center, Chungbuk National University, 194-21, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, Republic of Korea. Electronic address:

Chitinase 3-like 1 (Chi3L1) plays a major role in the pathogenesis of inflammatory diseases. We investigated the effect of Chi3L1 knockout on stroke development. Ischemia/reperfusion was induced by middle cerebral artery occlusion (MCAO) in Chi3L1 knockout and wildtype mice. Significantly increased infarct volume and decreased neurological deficit scores at 24 h after ischemia/reperfusion were found in Chi3L1 knockout mice compared to wildtype mice. Moreover, ischemic neuronal cell death was increased in Chi3L1 knockout mice through increased oxidative stress and release of IL-6 and IL-1β but IL-10 and IL-4 were reduced. Furthermore, expression of inflammation-related proteins (iNOS, COX-2, Iba-1, and GFAP) was significantly increased in Chi3L1 knockout mice compared to wildtype. In microglia isolated from MCAO-injured Chi3L1 knockout mice, expression of M1 markers (iNOS, CD86, IL-1β, and IL-6) was increased and M2 markers (Arg1, Mrc1, IL-10, and IL-4Ra) was decreased. In BV-2 cells, knockdown of Chi3L1 increased TNF-α- and INF-γ-induced expression of iNOS, COX-2, and Iba-1, but decreased the expression of Arg1, MRC1, and IL-4 receptor-alpha (IL-4Rα). Expression of IL-4Rα, an important factor of M2 polarization, and its downstream signals p-JAK1, p-JAK3, and p-STAT6, was much reduced in the knockout mice. Additionally, in BV-2 cells, knockdown of Chi3L1 by siRNA Chi3L1 decreased rhTNF-α- and INF-γ-induced expression of IL-4Rα, p-JAK1, p-JAK3, and p-STAT6. Furthermore, treatment with AS1517499 abolished Chi3L1 knockdown-induced reduced IL-4Rα and Arg1 but not CD86 expression. Our results indicate that deletion of Chi3L1 accelerates stroke development through enhancement of neuroinflammation by markedly decreasing STAT6-dependent M2 macrophage polarization.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.expneurol.2019.113082DOI Listing
January 2020

Bee venom phospholipase A2 ameliorates amyloidogenesis and neuroinflammation through inhibition of signal transducer and activator of transcription-3 pathway in Tg2576 mice.

Transl Neurodegener 2019 2;8:26. Epub 2019 Oct 2.

1College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea.

Background: Neuroinflammation and accumulation of β-amyloid (Aβ) play a significant role in the onset and progression of Alzheimer's disease (AD). Our previous study demonstrated that signal transducer and activator of transcription-3 (STAT3) plays a major role in neuroinflammation and amyloidogenesis.

Methods: In the present study, we investigated the inhibitory effect of bee venom phospholipase A2 (bvPLA2) on memory deficiency in Tg2576 mice, which demonstrate genetic characteristics of AD and the mechanism of its action at the cellular and animal level. For in vivo study, we examined the effect of bvPLA2 on improving memory by conducting several behavioral tests with the administration of bvPLA2 (1 mg/kg) to Tg2576 mice. For in vitro study, we examined the effect of bvPLA2 on amyloidogenesis and neuroinflammation by treating bvPLA2 on LPS-activated BV2 cells.

Results: We found that bvPLA2 alleviated memory impairment in Tg2576 mice, as demonstrated in the behavioral tests assessing memory. In the bvPLA2-treated group, Aβ, amyloid precursor protein (APP), and β-secretase 1 (BACE1) levels and β-secretase activity were significantly decreased. Expression of pro-inflammatory cytokines and inflammation-related proteins decreased in the brain of bvPLA2-treated group, whereas anti-inflammatory cytokines increased. In addition, bvPLA2 reduced STAT3 phosphorylation in the brains of the bvPLA2-treated group. At the cellular level, bvPLA2 inhibits production of nitric oxide, pro-inflammatory cytokines, and inflammation-related proteins including p-STAT3. Additionally, bvPLA2 inhibits the production of Aβ in cultured BV-2 cells. Results from the docking experiment, pull-down assay, and the luciferase assay show that bvPLA2 directly binds STAT3 and, thus, regulates gene expression levels. Moreover, when the STAT3 inhibitor and bvPLA2 were administered together, the anti-amyloidogenic and anti-inflammatory effects were further enhanced than when they were administered alone.

Conclusion: These results suggest that bvPLA2 could restore memory by inhibiting the accumulation of Aβ and inflammatory responses via blockage of STAT3 activity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s40035-019-0167-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6774221PMC
October 2019

Roles of chitinase 3-like 1 in the development of cancer, neurodegenerative diseases, and inflammatory diseases.

Pharmacol Ther 2019 11 26;203:107394. Epub 2019 Jul 26.

College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk 28160, Republic of Korea. Electronic address:

Chitinase 3-like 1 (CHI3L1) is a secreted glycoprotein that mediates inflammation, macrophage polarization, apoptosis, and carcinogenesis. The expression of CHI3L1 is strongly increased by various inflammatory and immunological conditions, including rheumatoid arthritis, multiple sclerosis, Alzheimer's disease, and several cancers. However, its physiological and pathophysiological roles in the development of cancer and neurodegenerative and inflammatory diseases remain unclear. Several studies have reported that CHI3L1 promotes cancer proliferation, inflammatory cytokine production, and microglial activation, and that multiple receptors, such as advanced glycation end product, syndecan-1/αVβ3, and IL-13Rα2, are involved. In addition, the pro-inflammatory action of CHI3L1 may be mediated via the protein kinase B and phosphoinositide-3 signaling pathways and responses to various pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin-1β, interleukin-6, and interferon-γ. Therefore, CHI3L1 could contribute to a vast array of inflammatory diseases. In this article, we review recent findings regarding the roles of CHI3L1 and suggest therapeutic approaches targeting CHI3L1 in the development of cancers, neurodegenerative diseases, and inflammatory diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pharmthera.2019.107394DOI Listing
November 2019

Inhibition of Lung Tumor Development in ApoE Knockout Mice via Enhancement of TREM-1 Dependent NK Cell Cytotoxicity.

Front Immunol 2019 18;10:1379. Epub 2019 Jun 18.

College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, South Korea.

Apolipoprotein E (ApoE) is known to regulate lipid homeostasis and associated with atherosclerogenesis. Eventhough atherosclerogenesis is associated with tumor development, the role of ApoE in lung tumorigenesis and metastasis is not clear. Thus, the tumor growth and metastasis were compared in WT and ApoE knockout (KO) mice. Urethane-induced lung tumor incidence and B16F10 lung metastasis in ApoE knockout (KO) mice were significantly reduced in comparison to that in WT mice. Knockdown of ApoE expression in lung cancer cells and B16F10 cells also decreased cancer cell growth and metastasis. The inhibitory effect of ApoE KO on tumor development and metastasis was associated with increase of infiltration of NK cells. NK cells derived from ApoE KO mice showed much greater cytotoxicity than those from WT mice. These cytotoxic effect of NK cells derived from ApoE KO mice was associated with higher expression of Granzyme B, Fas Ligand, IFN-γ, TNF-α, NKG2D, NKp46, and DNAM-1 expression. Triggering receptor expressed on myeloid cell (TREM)-1 is a proinflammatory mediator expressed on NK cells, and is known to be associated with NK cell cytotoxicity. Thus, we investigated the role of TREM-1 on ApoE KO mice originated NK cell mediated cytotoxicity for cancer cells. Blockade of TREM-1 expression with a TREM-1 antagonist prevented NK cell-mediated cytotoxicity. TREM-1 antibody recovered cytotoxic effect of NK cells derived from KO mice of T-bet, which upregulating gene for TREM-1. These data indicate that ApoE KO suppressed lung tumor development and metastasis via increase of TREM-1-dependent anti-tumor activity of NK cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fimmu.2019.01379DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6592261PMC
October 2020

Combination Effect of Titrated Extract of and Astaxanthin in a Mouse Model of Phthalic Anhydride-Induced Atopic Dermatitis.

Allergy Asthma Immunol Res 2019 Jul;11(4):548-559

College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Korea.

Purpose: In our previous study, we demonstrated that both titrated extract of (TECA) and astaxanthin (AST) have anti-inflammatory effects in a 5% phthalic anhydride (PA) mouse model of atopic dermatitis (AD). The increasing prevalence of AD demands new therapeutic approaches for treating the disease. We investigated the therapeutic efficacy of the ointment form of TECA, AST and a TECA + AST combination in a mouse model of AD to see whether a combination of the reduced doses of 2 compounds could have a synergistic effect.

Methods: An AD-like lesion was induced by the topical application of 5% PA to the dorsal ear and back skin of an Hos:HR-1 mouse. After AD induction, TECA (0.5%), AST (0.5%) and the TECA (0.25%) + AST (0.25%) combination ointment (20 μg/cm²) were spread on the dorsum of the ear or back skin 3 times a week for 4 weeks. We evaluated dermatitis severity, histopathological changes and changes in protein expression by Western blotting for inducible nitric oxide synthase (iNOS), cyclocxygenase (COX)-2, and nuclear factor (NF)-κB activity. We also measured the concentrations of tumor necrosis factor (TNF)-α, interleukin (IL)-6 and immunoglobulin E (IgE) in the blood of AD mice by enzyme-linked immunosorbent assay (ELISA).

Results: PA-induced skin morphological changes and ear thickness were significantly reduced by TECA, AST and TECA + AST treatments, but these inhibiting effects were more pronounced in the TECA + AST treatment. TECA, AST and the TECA+AST reatments inhibited the expression of iNOS and COX-2; NF-κB activity; and the release of TNF-α, IL-6 and IgE. However, the TECA+AST treatment showed additive or synergistic effects on AD.

Conclusions: Our results demonstrate that the combination of TECA and AST could be a promising therapeutic agent for AD by inhibiting NF-κB signaling.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4168/aair.2019.11.4.548DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6557773PMC
July 2019

Loss of parkin reduces lung tumor development by blocking p21 degradation.

PLoS One 2019 21;14(5):e0217037. Epub 2019 May 21.

College of Pharmacy and Medical Research Center, Chungbuk National University, Osong-eup, Heungduk-gu, Cheongju, Chungbuk, Republic of Korea.

Several epidemiological studies have demonstrated the reciprocal relationship between the development of cancer and Parkinson's disease (PD). However, the possible mechanisms underlying this relationship remain unclear. To identify this relationship, we first compared lung tumor growth in parkin knockout (KO) mice and wild-type (WT) mice. Parkin KO mice showed decreased lung tumor growth and increased expression of p21, a cell cycle arrester, as compared with WT mice. We also found that parkin interacts with p21, resulting in its degradation; however, parkin KO, knockdown, as well as mutation (R275W or G430D) reduced the degradation of p21. We investigated whether parkin KO increases the association of p21 with proliferating cell nuclear antigen (PCNA) or CDK2 by reducing p21 degradation, and, thus, arresting the cell cycle. The interaction between p21 and PCNA or CDK2 was also enhanced by parkin knockdown, and this increased interaction induced sub G0/G1 arrest, leading to cell death. Therefore, our data indicate that parkin KO reduces the development of lung tumors via cell cycle arrest by blocking the degradation of p21. These findings suggest that PD could be associated with lower lung cancer incidence.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0217037PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6528990PMC
February 2020

Inhibitory effect of Carnosol on UVB-induced inflammation via inhibition of STAT3.

Arch Pharm Res 2019 Mar 15;42(3):274-283. Epub 2018 Nov 15.

College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungduk-gu, Cheongju, Chungbuk, 361-951, Republic of Korea.

Ultraviolet B (UVB) irradiation causes sunburn, inflammatory responses, dysregulation of immune function, oxidative stress, DNA damage and photocarcinogenesis on skin. Rosemary (Rosmarinus officinalis L.) has been reported to inhibit inflammation. Carnosol, a major component of Rosemary, has prominent anti-inflammatory effects. However, its protective effect on UVB-induced inflammatory skin responses has not yet been reported. Here, we investigated the effectiveness of carnosol on UVB-induced inflammation. We examined the anti-inflammation effect of topical application of carnosol (0.05 µg/cm) on UVB (540 mJ/cm, for 3 successive days)-induced skin inflammation in HR1 mice. Topical application of carnosol inhibited UVB-induced erythema, epidermal thickness, inflammatory responses in HR1 mice. Carnosol reduced the level of Immunoglobulin-E and IL-1β in blood serum of UVB-induced mice. Carnosol also significantly inhibited the UVB-induced expression of inflammatory marker protein (iNOS and COX-2) in back skin of mice. In addition, carnosol treated skin decreased activation of STAT3, a transcriptional factor regulating inflammatory genes. Our study suggested that carnosol has protective effects on skin inflammatory skin damages by UVB.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12272-018-1088-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6426997PMC
March 2019

Astaxanthin alleviated ethanol-induced liver injury by inhibition of oxidative stress and inflammatory responses via blocking of STAT3 activity.

Sci Rep 2018 09 20;8(1):14090. Epub 2018 Sep 20.

College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea.

Astaxanthin (AXT) is classified as a xanthophyll carotenoid compound which have broader functions including potent antioxidant, anti-inflammatory and neuroprotective properties. Considerable researches have demonstrated that AXT shows preventive and therapeutic properties against for Diabetes, Osteoarthritis and Rheumatoid Arthritis. However, the protective effect of AXT on liver disease has not yet been reported. In this study, we investigated effects of AXT on ethanol-induced liver injury in chronic plus binge alcohol feeding model. The hepatic steatosis and inflammation induced by ethanol administration were alleviated by AXT. Serum levels of aspartate transaminase and alanine transaminase were decreased in the livers of AXT administrated group. The ethanol-induced expression of cytochrome P450 2E1 (CYP2E1), pro-inflammatory proteins, cytokines, chemokines and reactive oxygen species (ROS) levels were also reduced in the livers of AXT administrated group. Moreover, ethanol-induced infiltration of neutrophils was decreased in the livers of AXT administrated group. Docking model and pull-down assay showed that AXT directly binds to the DNA binding site of STAT3. Moreover, AXT decreased STAT3 phosphorylation in the liver of AXT administration group. Therefore, these results suggest that AXT could prevent ethanol-induced hepatic injury via inhibition of oxidant and inflammatory responses via blocking of STAT3 activity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-018-32497-wDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6148091PMC
September 2018

K284-6111 prevents the amyloid beta-induced neuroinflammation and impairment of recognition memory through inhibition of NF-κB-mediated CHI3L1 expression.

J Neuroinflammation 2018 Aug 11;15(1):224. Epub 2018 Aug 11.

College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea.

Background: Alzheimer's disease, which is pathologically characterized by an excessive accumulation of amyloid beta (Aβ) fibrils, is a degenerative brain disease and the most common cause of dementia. In a previous study, it was reported that an increased level of CHI3L1 in plasma was found in AD patients. We investigated the inhibitory effect of 2-({3-[2-(1-cyclohexen-1-yl)ethyl]-6,7-dimethoxy-4-oxo-3,4-dihydro-2-quinazolinyl}sulfanyl)-N-(4-ethylphenyl)butanamide (K284-6111), an inhibitor of chitinase 3 like 1 (CHI3L1), on memory impairment in Aβ-infused mice, and microglial BV-2 cells and astrocytes.

Methods: We examined whether K284-6111 (3 mg/kg given orally for 4 weeks) prevents amyloidogenesis and memory loss in Aβ-induced AD mice model. After intracerebroventrical (ICV) infusion of Aβ for 14 days, the cognitive function was assessed by the Morris water maze test and passive avoidance test. K284-6111 treatment was found to reduce Aβ-induced memory loss.

Results: A memory recovery effect was found to be associated with the reduction of Aβ-induced expression of inflammatory proteins (iNOS, COX-2, GFAP, and Iba-1) and the suppression of CHI3L1 expression in the brain. Additionally, K284-6111 reduced Aβ-induced β-secretase activity and Aβ generation. Lipopolysaccharide (LPS)-induced (1 μg/mL) expression of inflammatory (COX-2, iNOS, GFAP, Iba-1) and amyloidogenic proteins (APP, BACE1) were decreased in microglial BV-2 cells and cultured astrocytes by the K284-6111 treatment (0.5, 1, and 2 μM). Moreover, K284-6111 treatment suppressed p50 and p65 translocation into the nucleus, and phosphorylation of IκB in vivo and in vitro.

Conclusion: These results suggest that CHI3L1 inhibitor could be an applicable intervention drug in amyloidogenesis and neuroinflammation, thereby preventing memory dysfunction via inhibition of NF-κB.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12974-018-1269-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6087013PMC
August 2018

PRDX6 Inhibits Neurogenesis through Downregulation of WDFY1-Mediated TLR4 Signal.

Mol Neurobiol 2019 May 10;56(5):3132-3144. Epub 2018 Aug 10.

College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Heungdeok-gu, Cheongju, Chungbuk, 361-951, Republic of Korea.

Impaired neurogenesis has been associated with several brain disorders, such as Alzheimer's disease (AD) and Parkinson's disease (PD). The role of peroxiredoxin 6 (PRDX6) in neurodegenerative diseases is very controversial. To demonstrate the role of PRDX6 in neurogenesis, we compared the neurogenesis ability of PRDX6-overexpressing transgenic (Tg) mice and wild-type mice and studied the involved molecular mechanisms. We showed that the neurogenesis of neural stem cells (NSCs) and the expression of the marker protein were lower in PRDX6 Tg-mice than in wild-type mice. To determine the factors involved in PRDX6-related neural stem cell impairment, we performed a microarray experiment. We showed that the expression of WDFY1 was dramatically decreased in PRDX6-Tg mice. Moreover, WDFY1 siRNA decreases the differentiation ability of primary neural stem cells. Interestingly, WDFY1 reportedly recruits the signaling adaptor TIR-domain-containing adapter-inducing interferon-β (TRIF) to toll-like receptors (TLRs); thus, we showed the relationship among TLRs, PRDX6, and WDFY1. We showed that TLR4 was dramatically reduced in PRDX6 Tg mice, and reduced TLR4 expression and neurogenesis was reversed by the introduction of WDFY1 plasmid in the neural stem cells from PRDX6 Tg mice. This study indicated that PRDX6 inhibits the neurogenesis of neural precursor cells through TLR4-dependent downregulation of WDFY1 and suggested that the inhibitory effect of PRDX6 on neurogenesis play a role in the development of neurodegenerative diseases in the PRDX6 overexpressing transgenic mice.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12035-018-1287-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6476867PMC
May 2019

Deficiency of parkin suppresses melanoma tumor development and metastasis through inhibition of MFN2 ubiquitination.

Cancer Lett 2018 10 5;433:156-164. Epub 2018 Jul 5.

College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-21, Osong-eup, Heungduk-gu, Cheongju, Chungbuk, 28160, Republic of Korea. Electronic address:

Parkin, a critical gene of Parkinson's disease, is involved in the development of numerous cancers. However, the effect of parkin deficiency on melanoma growth and metastasis has not been reported. We showed that the tumor size and number of surface lung metastases, and expression of tumor growth and metastasis marker proteins were significantly lower in parkin-KO mice than those observed in non-transgenic controls. In an in vitro study, we also showed that parkin siRNA inhibited cell growth and migration of B16F10 and SK-Mel-28 cells. Parkin-specific ubiquitination of mitofusin-2 (MFN2) was decreased in tumors and metastasized lung tissues of parkin-KO mice. Moreover, we showed that parkin directly binds and ubiquitinates MFN2. Knockdown of MFN2 decreased the expression of Bax and apoptotic cell death, but increased that of Bcl2 and apoptotic cancer cell death. However, these effects were reversed by knockdown of parkin. Conversely, inhibitory effects on melanoma growth and migration of parkin siRNA were reversed by MFN2 siRNA. These data indicate that melanoma development was inhibited in parkin-KO mice through maintaining of MFN2 level by inhibition of ubiquitinating ability of parkin.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.canlet.2018.07.007DOI Listing
October 2018

Peroxiredoxin 6 Inhibits Osteogenic Differentiation and Bone Formation Through Human Dental Pulp Stem Cells and Induces Delayed Bone Development.

Antioxid Redox Signal 2019 06 29;30(17):1969-1982. Epub 2018 Jun 29.

5 Department of Biology and Research Institute of Basic Sciences, College of Sciences, Kyung Hee University, Seoul, Republic of Korea.

Peroxiredoxins (PRDXs) are thiol-specific antioxidant enzymes that regulate redox balance that are critical for maintaining the cellular potential for self-renewal and stemness. Stem cell-based regenerative medicine is a promising approach in tissue reconstruction. However, to obtain functional cells for use in clinical applications, stem cell technology still requires improvements. In this study, we found that PRDX6 levels were decreased during osteogenic differentiation in human dental pulp stem cells (hDPSCs). hDPSCs stably expressing Myc-PRDX6 (hDPSC/myc-PRDX6) inhibited cell growth in hDPSCs during osteogenic differentiation and impaired osteogenic phenotypes such as alkaline phosphatase (ALP) activity, mineralized nodule formation, and osteogenic marker genes [ALP and osteocalcin (OCN)]. hDPSC cell lines stably expressing mutant glutathione peroxidase (PRDX6(C47S)) and independent phospholipase A2 (PRDX6(S32A)) were also generated. Each mutant form of PRDX6 abolished the impaired osteogenic phenotypes, the transforming growth factor-β-mediated Smad2 and p38 pathways, and RUNX2 expression. Furthermore, experiments revealed that hDPSC/myc-PRDX6 suppressed hDPSC-based bone regeneration in calvarial defect mice, and newborn PRDX6 transgenic mice exhibited delayed bone development and reduced RUNX2 expression. These findings illuminate the effects of PRDX6 during osteogenic differentiation of hDPSCs, and also suggest that regulating PRDX6 may improve the clinical utility of stem cell-based regenerative medicine for the treatment of bone diseases. 30, 1969-1982.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1089/ars.2018.7530DOI Listing
June 2019

Estrogen deficiency exacerbates Aβ-induced memory impairment through enhancement of neuroinflammation, amyloidogenesis and NF-ĸB activation in ovariectomized mice.

Brain Behav Immun 2018 10 18;73:282-293. Epub 2018 May 18.

College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-31, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea. Electronic address:

Estrogen is well known to have a preventative effect in Alzheimer's disease (AD) pathology. Several studies have demonstrated that nuclear factor kappa-B (NF-ĸB) can contribute to the effects of estrogen on the development of AD. We investigated whether NF-ĸB affects amyloid-beta (Aβ)-induced memory impairment in an estrogen-lacking condition. In the present study, nine-week-old Institute cancer research (ICR) mice were ovariectomized to block estrogen stimulation. Ten weeks after the ovariectomization, mice were administered with Aβ (300 pmol) via intracerebroventricular (ICV) infusion for 2 weeks. Memory impairment, neuroinflammatory protein expression, and amyloidogenic pathways were then measured. Ovariectomized mice demonstrated severe memory impairment, Aβ accumulation, neprilysin downregulation, and activation of NF-ĸB signaling compared to sham-control mice. In vitro experiments demonstrated that β-estradiol (10 μM) inhibited Aβ (1 μM)-induced neuroinflammation in microglial BV-2 cells and prevented Aβ-induced cell death in primary cultured neuronal cells. As in in vivo experiments, NF-ĸB activation was significantly upregulated in in vitro experiments. Furthermore β-estradiol treatment inhibited NF-ĸB activation in both of microglial BV-2 cells and cultured neuronal cells. These findings suggest that estrogen may protect against memory impairment through the regulation of Aβ accumulation and neurogenic inflammation by inhibiting NF-κB activity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbi.2018.05.013DOI Listing
October 2018

Anti-inflammatory effect of astaxanthin in phthalic anhydride-induced atopic dermatitis animal model.

Exp Dermatol 2018 04;27(4):378-385

College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.

In this study, we investigated anti-dermatitic effects of astaxanthin (AST) in phthalic anhydride (PA)-induced atopic dermatitis (AD) animal model as well as in vitro model. AD-like lesion was induced by the topical application of 5% PA to the dorsal skin or ear of Hos:HR-1 mouse. After AD induction, 100 μL of 1 mg/mL and 2 mg/mL of AST (10 μg or 20 μg/cm ) was spread on the dorsum of ear or back skin three times a week for four weeks. We evaluated dermatitis severity, histopathological changes and changes in protein expression by Western blotting for inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and nuclear factor-κB (NF-κB) activity. We also measured tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) and immunoglobulin E (IgE) concentration in the blood of AD mice by enzyme-linked immunosorbent assay (ELISA). AST treatment attenuated the development of PA-induced AD. Histological analysis showed that AST inhibited hyperkeratosis, mast cells and infiltration of inflammatory cells. AST treatment inhibited expression of iNOS and COX-2, and NF-κB activity as well as release of TNF-α, IL-1β, IL-6 and IgE. In addition, AST (5, 10 and 20 μM) potently inhibited lipopolysaccharide (LPS) (1 μg/mL)-induced nitric oxide (NO) production, expression of iNOS and COX-2 and NF-κB DNA binding activities in RAW 264.7 macrophage cells. Our data demonstrated that AST could be a promising agent for AD by inhibition of NF-κB signalling.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/exd.13437DOI Listing
April 2018

Isolation and Characterization of Pepsin-soluble Collagens from Bones, Skins, and Tendons in Duck Feet.

Korean J Food Sci Anim Resour 2016 Oct;36(5):665-670

Department of Food science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea.

The objectives of this study were conducted to characterize pepsin-soluble collagen (PSC) extracted from bones (PSC-B), skins (PSC-S), and tendons (PSC-T) of duck feet and to determine their thermal and structural properties, for better practical application of each part of duck feet as a novel source for collagen. PSC was extracted from each part of duck feet by using 0.5 M acetic acid containing 5% (w/w) pepsin. Electrophoretic patterns showed that the ratio between α and α chains, which are subunit polypeptides forming collagen triple helix, was approximately 1:1 in all PSCs of duck feet. PSC-B had slightly higher molecular weights for α and α chains than PSC-S and PSC-T. From the results of differential scanning calorimetry (DSC), higher onset (beginning point of melting) and peak temperatures (maximum point of curve) were found at PSC-B compared to PSC-S and PSC-T (<0.05). Fourier transform infrared spectroscopy (FT-IR) presented that PSC-S and PSC-T had similar intermolecular structures and chemical bonds, whereas PSC-B exhibited slight difference in amide A region. Irregular dense sheet-like films linked by random-coiled filaments were observed similarly. Our findings indicate that PSCs of duck feet might be characterized similarly as a mixture of collagen type I and II and suggest that duck feet could be used for collagen extraction without deboning and/or separation processes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.5851/kosfa.2016.36.5.665DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5112430PMC
October 2016

Effect of Ginger Extract and Citric Acid on the Tenderness of Duck Breast Muscles.

Korean J Food Sci Anim Resour 2015 31;35(6):721-30. Epub 2015 Dec 31.

Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea.

The objective of this study was to examine the effect of ginger extract (GE) combined with citric acid on the tenderness of duck breast muscles. Total six marinades were prepared with the combination of citric acid (0 and 0.3 M citric acid) and GE (0, 15, and 30%). Each marinade was sprayed on the surface of duck breasts (15 mL/100 g), and the samples were marinated for 72 h at 4℃. The pH and proteolytic activity of marinades were determined. After 72 h of marination, Warner Bratzler shear force (WBSF), myofibrillar fragmentation index (MFI), pH, cooking loss, moisture content, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and protein solubility were evaluated. There was no significant (p>0.05) difference in moisture content or cooking loss among all samples. However, GE marination resulted in a significant (p<0.05) decrease in WBSF but a significant (p<0.05) increase in pH and MFI. In addition, total protein and myofibrillar protein solubility of GE-marinated duck breast muscles in both WOC (without citric acid) and WC (with citric acid) conditions were significantly (p<0.05) increased compared to non-GE-marinated duck breast muscles. SDS-PAGE showed an increase of protein degradation (MHC and actin) in WC condition compared to WOC condition. There was a marked actin reduction in GE-treated samples in WC. The tenderization effect of GE combined with citric acid may be attributed to various mechanisms such as increased MFI and myofibrillar protein solubility.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.5851/kosfa.2015.35.6.721DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4726951PMC
February 2016

Effects of Red and Green Glassworts (Salicornia herbacea L.) on Physicochemical and Textural Properties of Reduced-salt Cooked Sausages.

Korean J Food Sci Anim Resour 2014 30;34(3):378-86. Epub 2014 Jun 30.

Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 143-701, Korea.

This study was conducted to determine the effects of red and green glasswort on the physicochemical and textural properties of reduced-salt cooked sausages. The control was formulated with 1.5% NaCl; then, three reduced-salt treatments were prepared, with 0.75% NaCl (RS), 0.75% NaCl+1.0% red glasswort (RSR) and 0.75% NaCl+1.0% green glasswort (RSG), respectively. The addition of glasswort within the added amount of 1% had no influence on the pH value of the reduced-salt cooked sausages, regardless of the glasswort type. In terms of color, RSG treatment conveyed a higher hue angle value than the RSR treatment (p<0.05). Increases in the protein solubility (total and myofibrillar proteins) and apparent viscosity of reduced-salt meat batter that were due to the addition of glasswort were observed; however, there were no differences according to the type of glasswort (p>0.05). Furthermore, the addition of glasswort, regardless of its type, resulted in decreased cooking loss, and increased emulsion stability. As a result, reduced-salt cooked sausages formulated with either red or green glasswort demonstrated similar textural properties to those of the control. In conclusion, the type of glasswort within an added amount of 1% had no influence on the physicochemical and textural properties of reduced-salt cooked sausages, except for the color characteristics. In terms of color alteration by the addition of glasswort, the red glasswort, which in comparison with the green glasswort could minimize the color changes of reduced-salt cooked sausages, might be an effective source for manufacturing meat products.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.5851/kosfa.2014.34.3.378DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4597869PMC
January 2016
-->