Publications by authors named "Imre Farkas"

33 Publications

The cryptic gonadotropin-releasing hormone neuronal system of human basal ganglia.

Elife 2021 Jun 15;10. Epub 2021 Jun 15.

Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary.

Human reproduction is controlled by ~2000 hypothalamic gonadotropin-releasing hormone (GnRH) neurons. Here, we report the discovery and characterization of additional ~150,000-200,000 GnRH-synthesizing cells in the human basal ganglia and basal forebrain. Nearly all extrahypothalamic GnRH neurons expressed the cholinergic marker enzyme choline acetyltransferase. Similarly, hypothalamic GnRH neurons were also cholinergic both in embryonic and adult human brains. Whole-transcriptome analysis of cholinergic interneurons and medium spiny projection neurons laser-microdissected from the human putamen showed selective expression of and autoreceptors in the cholinergic cell population and uncovered the detailed transcriptome profile and molecular connectome of these two cell types. Higher-order non-reproductive functions regulated by GnRH under physiological conditions in the human basal ganglia and basal forebrain require clarification. The role and changes of GnRH/GnRHR1 signaling in neurodegenerative disorders affecting cholinergic neurocircuitries, including Parkinson's and Alzheimer's diseases, need to be explored.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.7554/eLife.67714DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8245125PMC
June 2021

Gonadal Cycle-Dependent Expression of Genes Encoding Peptide-, Growth Factor-, and Orphan G-Protein-Coupled Receptors in Gonadotropin- Releasing Hormone Neurons of Mice.

Front Mol Neurosci 2020 18;13:594119. Epub 2021 Jan 18.

Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Budapest, Hungary.

Rising serum estradiol triggers the surge release of gonadotropin-releasing hormone (GnRH) at late proestrus leading to ovulation. We hypothesized that proestrus evokes alterations in peptidergic signaling onto GnRH neurons inducing a differential expression of neuropeptide-, growth factor-, and orphan G-protein-coupled receptor (GPCR) genes. Thus, we analyzed the transcriptome of GnRH neurons collected from intact, proestrous and metestrous GnRH-green fluorescent protein (GnRH-GFP) transgenic mice using Affymetrix microarray technique. Proestrus resulted in a differential expression of genes coding for peptide/neuropeptide receptors including , and . In this gene cluster, mRNA expression was upregulated and the others were downregulated. Expression of growth factor receptors and their related proteins was also altered showing upregulation of , and and downregulation of and genes. , an orphan GPCR, was upregulated during proestrus, while others were significantly downregulated (, and ). Further affected receptors included vomeronasal receptors (, and ) and platelet-activating factor receptor (), all with marked downregulation. Patch-clamp recordings from mouse GnRH-GFP neurons carried out at metestrus confirmed that the differentially expressed IGF-1, secretin, and GPR107 receptors were operational, as their activation by specific ligands evoked an increase in the frequency of miniature postsynaptic currents (mPSCs). These findings show the contribution of certain novel peptides, growth factors, and ligands of orphan GPCRs to regulation of GnRH neurons and their preparation for the surge release.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fnmol.2020.594119DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7863983PMC
January 2021

Somatostatin Neurons of the Bed Nucleus of Stria Terminalis Enhance Associative Fear Memory Consolidation in Mice.

J Neurosci 2021 03 19;41(9):1982-1995. Epub 2021 Jan 19.

Institute of Experimental Medicine, Laboratory of Translational Behavioural Neuroscience, Budapest 1083, Hungary

Excessive fear learning and generalized, extinction-resistant fear memories are core symptoms of anxiety and trauma-related disorders. Despite significant evidence from clinical studies reporting hyperactivity of the bed nucleus of stria terminalis (BNST) under these conditions, the role of BNST in fear learning and expression is still not clarified. Here, we tested how BNST modulates fear learning in male mice using a chemogenetic approach. Activation of GABAergic neurons of BNST during fear conditioning or memory consolidation resulted in enhanced cue-related fear recall. Importantly, BNST activation had no acute impact on fear expression during conditioning or recalls, but it enhanced cue-related fear recall subsequently, potentially via altered activity of downstream regions. Enhanced fear memory consolidation could be replicated by selectively activating somatostatin (SOM), but not corticotropin-releasing factor (CRF), neurons of the BNST, which was accompanied by increased fear generalization. Our findings suggest the significant modulation of fear memory strength by specific circuits of the BNST. The bed nucleus of stria terminalis (BNST) mediates different defensive behaviors, and its connections implicate its integrative modulatory role in fear memory formation; however, the involvement of BNST in fear learning has yet to be elucidated in detail. Our data highlight that BNST stimulation enhances fear memory formation without direct effects on fear expression. Our study identified somatostatin (SOM) cells within the extended amygdala as specific neurons promoting fear memory formation. These data underline the importance of anxiety circuits in maladaptive fear memory formation, indicating elevated BNST activity as a potential vulnerability factor to anxiety and trauma-related disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1523/JNEUROSCI.1944-20.2020DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7939080PMC
March 2021

Insulin-like growth factor 1 (IGF-1) increases GABAergic neurotransmission to GnRH neurons via suppressing the retrograde tonic endocannabinoid signaling pathway in mice.

Neuroendocrinology 2020 Dec 24. Epub 2020 Dec 24.

Introduction: Hypophysiotropic gonadotropin releasing-hormone (GnRH) neurons orchestrate various physiological events that control the onset of puberty. Previous studies showed that insulin-like growth factor 1 (IGF-1) induces the secretion of GnRH and accelerates the onset of puberty, suggesting a regulatory role of this hormone upon GnRH neurons.

Methods: To reveal responsiveness of GnRH neurons to IGF-1 and elucidate molecular pathways acting downstream to the IGF-1 receptor (IGF-1R), in vitro electrophysiological experiments were carried out on GnRH-GFP neurons in acute brain slices from prepubertal (23-29 days) and pubertal (50-day) male mice.

Results: Administration of IGF-1 (13 nM) significantly increased the firing rate and frequency of spontaneous postsynaptic currents (sPSCs), and that of excitatory GABAergic miniature postsynaptic currents (mPSCs). No GABAergic mPSCs were induced by IGF-1 in the presence of GABAA-R blocker picrotoxin. The increase in the mPSC frequency was prevented by the use of IGF-1R antagonist, JB1 (1 µM) or the intracellularly applied PI3K blocker (LY294002, 50 µM) showing involvement of IGF-1R and PI3K in the mechanism. Blockade of the transient receptor potential vanilloid 1 (TRPV1), an element of the tonic retrograde endocannabinoid machinery by AMG9810 (10 µM) or antagonizing cannabinoid receptor type-1 (CB1) by AM251 (1 µM) abolished the effect.

Discussion/conclusion: These findings indicate that IGF-1 arrests the tonic retrograde endocannabinoid pathway in GnRH neurons and this disinhibition increases the release of GABA from presynaptic terminals that, in turn, activates GnRH neurons leading to the fine-tuning of the hypothalamo-pituitary-gonadal axis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1159/000514043DOI Listing
December 2020

Networking of glucagon-like peptide-1 axons with GnRH neurons in the basal forebrain of male mice revealed by 3DISCO-based immunocytochemistry and optogenetics.

Brain Struct Funct 2021 Jan 9;226(1):105-120. Epub 2020 Nov 9.

Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Szigony u. 43, 1083, Budapest, Hungary.

Glucagon-like peptide-1 (GLP-1) regulates reproduction centrally, although, the neuroanatomical basis of the process is unknown. Therefore, the putative networking of the central GLP-1 and gonadotropin-releasing hormone (GnRH) systems was addressed in male mice using whole mount immunocytochemistry and optogenetics. Enhanced antibody penetration and optical clearing procedures applied to 500-1000 µm thick basal forebrain slices allowed the simultaneous visualization of the two distinct systems in the basal forebrain. Beaded GLP-1-IR axons innervated about a quarter of GnRH neurons (23.2 ± 1.4%) forming either single or multiple contacts. GnRH dendrites received a more intense GLP-1 innervation (64.6 ± 0.03%) than perikarya (35.4 ± 0.03%). The physiological significance of the innervation was examined by optogenetic activation of channelrhodopsin-2 (ChR2)-expressing axons of preproglucagon (GCG) neurons upon the firing of GnRH neurons by patch clamp electrophysiology in acute brain slices of triple transgenic mice (Gcg-cre/ChR2/GFP-GnRH). High-frequency laser beam stimulation (20 Hz, 10 ms pulse width, 3 mW laser power) of ChR2-expressing GCG axons in the mPOA increased the firing rate of GnRH neurons (by 75 ± 17.3%, p = 0.0007). Application of the GLP-1 receptor antagonist, Exendin-3-(9-39) (1 μM), prior to the photo-stimulation, abolished the facilitatory effect. In contrast, low-frequency trains of laser pulses (0.2 Hz, 60 pulses) had no effect on the spontaneous postsynaptic currents of GnRH neurons. The findings indicate a direct wiring of GLP-1 neurons with GnRH cells which route is excitatory for the GnRH system. The pathway may relay metabolic signals to GnRH neurons and synchronize metabolism with reproduction.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00429-020-02167-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7817561PMC
January 2021

Ghrelin Receptor Stimulation of the Lateral Parabrachial Nucleus in Rats Increases Food Intake but not Food Motivation.

Obesity (Silver Spring) 2020 08 6;28(8):1503-1511. Epub 2020 Jul 6.

Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.

Objective: The lateral parabrachial nucleus (lPBN) in the brainstem has emerged as a key area involved in feeding control that is targeted by several circulating anorexigenic hormones. Here, the objective was to determine whether the lPBN is also a relevant site for the orexigenic hormone ghrelin, inspired by studies in mice and rats showing that there is an abundance of ghrelin receptors in this area.

Methods: This study first explored whether iPBN cells respond to ghrelin involving Fos mapping and electrophysiological studies in rats. Next, rats were injected acutely with ghrelin, a ghrelin receptor antagonist, or vehicle into the lPBN to investigate feeding-linked behaviors.

Results: Curiously, ghrelin injection (intracerebroventricular or intravenous) increased Fos protein expression in the lPBN yet the predominant electrophysiological response was inhibitory. Intra-lPBN ghrelin injection increased chow or high-fat diet intake, whereas the antagonist decreased chow intake only. In a choice paradigm, intra-lPBN ghrelin increased intake of chow but not lard or sucrose. Intra-lPBN ghrelin did not alter progressive ratio lever pressing for sucrose or conditioned place preference for chocolate.

Conclusions: The lPBN is a novel locus from which ghrelin can alter consummatory behaviors (food intake and choice) but not appetitive behaviors (food reward and motivation).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/oby.22875DOI Listing
August 2020

Secretin Regulates Excitatory GABAergic Neurotransmission to GnRH Neurons via Retrograde NO Signaling Pathway in Mice.

Front Cell Neurosci 2019 23;13:371. Epub 2019 Aug 23.

Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.

In mammals, reproduction is regulated by a wide range of metabolic hormones that maintain the proper energy balance. In addition to regulating feeding and energy expenditure, these metabolic messengers also modulate the functional performance of the hypothalamic-pituitary-gonadal (HPG) axis. Secretin, a member of the secretin-glucagon-vasoactive intestinal peptide hormone family, has been shown to alter reproduction centrally, although the underlying mechanisms have not been explored yet. In order to elucidate its central action in the neuroendocrine regulation of reproduction, electrophysiological slice experiments were carried out on GnRH-GFP neurons in male mice. Bath application of secretin (100 nM) significantly increased the frequency of the spontaneous postsynaptic currents (sPSCs) to 118.0 ± 2.64% compared to the control, and that of the GABAergic miniature postsynaptic currents (mPSCs) to 147.6 ± 19.19%. Resting membrane potential became depolarized by 12.74 ± 4.539 mV after secretin treatment. Frequency of evoked action potentials (APs) also increased to 144.3 ± 10.8%. The secretin-triggered elevation of the frequency of mPSCs was prevented by using either a secretin receptor antagonist (3 μM) or intracellularly applied G-protein-coupled receptor blocker (GDP-β-S; 2 mM) supporting the involvement of secretin receptor in the process. Regarding the actions downstream to secretin receptor, intracellular blockade of protein kinase A (PKA) with KT-5720 (2 μM) or intracellular inhibition of the neuronal nitric oxide synthase (nNOS) by NPLA (1 μM) abolished the stimulatory effect of secretin on mPSCs. These data suggest that secretin acts on GnRH neurons via secretin receptors whose activation triggers the cAMP/PKA/nNOS signaling pathway resulting in nitric oxide release and in the presynaptic terminals this retrograde NO machinery regulates the GABAergic input to GnRH neurons.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fncel.2019.00371DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6716020PMC
August 2019

Proestrus Differentially Regulates Expression of Ion Channel and Calcium Homeostasis Genes in GnRH Neurons of Mice.

Front Mol Neurosci 2019 31;12:137. Epub 2019 May 31.

Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.

In proestrus, the changing gonadal hormone milieu alters the physiological properties of GnRH neurons and contributes to the development of the GnRH surge. We hypothesized that proestrus also influences the expression of different ion channel genes in mouse GnRH neurons. Therefore, we performed gene expression profiling of GnRH neurons collected from intact, proestrous and metestrous GnRH-GFP transgenic mice, respectively. Proestrus changed the expression of 37 ion channel and 8 calcium homeostasis-regulating genes. Voltage-gated sodium channels responded with upregulation of three alpha subunits (, , and ). Within the voltage-gated potassium channel class, , , , and were upregulated, while others (, , , and ) underwent downregulation. Proestrus also had impact on inwardly rectifying potassium channel subunits manifested in enhanced expression of and genes, whereas , , and subunit genes were downregulated. The two-pore domain potassium channels also showed differential expression with upregulation of and reduced expression of three subunit genes (, , and ). Changes in expression of chloride channels involved both the voltage-gated ( and ) and the intracellular () subtypes. Regarding the pore-forming alpha-1 subunits of voltage-gated calcium channels, two ( and ) were upregulated, while showed downregulation. The ancillary subunits were also differentially regulated (, , , , , , , and ). In addition, ryanodine receptor 1 () gene was downregulated, while a transient receptor potential cation channel () gene showed enhanced expression. Genes encoding proteins regulating the intracellular calcium homeostasis were also influenced (, , , , , , and ). The differential expression of genes coding for ion channel proteins in GnRH neurons at late proestrus indicates that the altering hormone milieu contributes to remodeling of different kinds of ion channels of GnRH neurons, which might be a prerequisite of enhanced cellular activity of GnRH neurons and the subsequent surge release of the neurohormone.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fnmol.2019.00137DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6554425PMC
May 2019

Interleukin-6 in the central amygdala is bioactive and co-localised with glucagon-like peptide-1 receptor.

J Neuroendocrinol 2019 06 23;31(6):e12722. Epub 2019 May 23.

Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.

Neuronal circuits involving the central amygdala (CeA) are gaining prominence as important centres for regulation of metabolic functions. As a part of the subcortical food motivation circuitry, CeA is associated with food motivation and hunger. We have previously shown that interleukin (IL)-6 can act as a downstream mediator of the metabolic effects of glucagon-like peptide-1 (GLP-1) receptor (R) stimulation in the brain, although the sites of these effects are largely unknown. In the present study, we used the newly generated and validated RedIL6 reporter mouse strain to investigate the presence of IL-6 in the CeA, as well as possible interactions between IL-6 and GLP-1 in this nucleus. IL-6 was present in the CeA, mostly in cells in the medial and lateral parts of this structure, and a majority of IL-6-containing cells also co-expressed GLP-1R. Triple staining showed GLP-1 containing fibres co-staining with synaptophysin close to or overlapping with IL-6 containing cells. GLP-1R stimulation enhanced IL-6 mRNA levels. IL-6 receptor-alpha (IL-6Rα) was found to a large part in neuronal CeA cells. Using electrophysiology, we determined that cells with neuronal properties in the CeA could be rapidly stimulated by IL-6 administration in vitro. Moreover, microinjections of IL-6 into the CeA could slightly reduce food intake in vivo in overnight fasted rats. In conclusion, IL-6 containing cells in the CeA express GLP-1R, are close to GLP-1-containing synapses, and demonstrate increased IL-6 mRNA in response to GLP-1R agonist treatment. IL-6, in turn, exerts biological effects in the CeA, possibly via IL-6Rα present in this nucleus.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/jne.12722DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6618171PMC
June 2019

Endocannabinoid and nitric oxide systems of the hypothalamic paraventricular nucleus mediate effects of NPY on energy expenditure.

Mol Metab 2018 12 18;18:120-133. Epub 2018 Sep 18.

Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, H-1083 Hungary; Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, MA, USA. Electronic address:

Objective: Neuropeptide Y (NPY) is one of the most potent orexigenic peptides. The hypothalamic paraventricular nucleus (PVN) is a major locus where NPY exerts its effects on energy homeostasis. We investigated how NPY exerts its effect within the PVN.

Methods: Patch clamp electrophysiology and Ca2+ imaging were used to understand the involvement of Ca2+ signaling and retrograde transmitter systems in the mediation of NPY induced effects in the PVN. Immuno-electron microscopy were performed to elucidate the subcellular localization of the elements of nitric oxide (NO) system in the parvocellular PVN. In vivo metabolic profiling was performed to understand the role of the endocannabinoid and NO systems of the PVN in the mediation of NPY induced changes of energy homeostasis.

Results: We demonstrated that NPY inhibits synaptic inputs of parvocellular neurons in the PVN by activating endocannabinoid and NO retrograde transmitter systems via mobilization of Ca2+ from the endoplasmic reticulum, suggesting that NPY gates the synaptic inputs of parvocellular neurons in the PVN to prevent the influence of non-feeding-related inputs. While intraPVN administered NPY regulates food intake and locomotor activity via NO signaling, the endocannabinoid system of the PVN selectively mediates NPY-induced decrease in energy expenditure.

Conclusion: Thus, within the PVN, NPY stimulates the release of endocannabinoids and NO via Ca-influx from the endoplasmic reticulum. Both transmitter systems appear to have unique roles in the mediation of the NPY-induced regulation of energy homeostasis, suggesting that NPY regulates food intake, energy expenditure, and locomotor activity through different neuronal networks of this nucleus.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molmet.2018.08.007DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6308028PMC
December 2018

Estradiol Increases Glutamate and GABA Neurotransmission into GnRH Neurons via Retrograde NO-Signaling in Proestrous Mice during the Positive Estradiol Feedback Period.

eNeuro 2018 Jul-Aug;5(4). Epub 2018 Aug 3.

Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1083, Hungary.

Surge release of gonadotropin-releasing hormone (GnRH) is essential in the activation of pituitary gonadal unit at proestrus afternoon preceded by the rise of serum 17β-estradiol (E2) level during positive feedback period. Here, we describe a mechanism of positive estradiol feedback regulation acting directly on GnRH-green fluorescent protein (GFP) neurons of mice. Whole-cell clamp and loose patch recordings revealed that a high physiological dose of estradiol (200 pM), significantly increased firing rate at proestrus afternoon. The mPSC frequency at proestrus afternoon also increased, whereas it decreased at metestrus afternoon and had no effect at proestrus morning. Inhibition of the estrogen receptor β (ERβ), intracellular blockade of the Src kinase and phosphatidylinositol 3 kinase (PI3K) and scavenge of nitric oxide (NO) inside GnRH neurons prevented the facilitatory estradiol effect indicating involvement of the ERβ/Src/PI3K/Akt/nNOS pathway in this fast, direct stimulatory effect. Immunohistochemistry localized soluble guanylate cyclase, the main NO receptor, in both glutamatergic and GABAergic terminals innervating GnRH neurons. Accordingly, estradiol facilitated neurotransmissions to GnRH neurons via both GABA-R and glutamate/AMPA/kainate-R. These results indicate that estradiol acts directly on GnRH neurons via the ERβ/Akt/nNOS pathway at proestrus afternoon generating NO that retrogradely accelerates GABA and glutamate release from the presynaptic terminals contacting GnRH neurons. The newly explored mechanism might contribute to the regulation of the GnRH surge, a fundamental prerequisite of the ovulation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1523/ENEURO.0057-18.2018DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6073979PMC
February 2019

Task Division within the Prefrontal Cortex: Distinct Neuron Populations Selectively Control Different Aspects of Aggressive Behavior via the Hypothalamus.

J Neurosci 2018 04 27;38(17):4065-4075. Epub 2018 Feb 27.

Department of Behavioral Neuroscience,

An important question in behavioral neurobiology is how particular neuron populations and pathways mediate the overall roles of brain structures. Here we investigated this issue by studying the medial prefrontal cortex (mPFC), an established locus of inhibitory control of aggression. We established in male rats that dominantly distinct mPFC neuron populations project to and produce dense fiber networks with glutamate release sites in the mediobasal hypothalamus (MBH) and lateral hypothalamus (LH; i.e., two executory centers of species-specific and violent bites, respectively). Optogenetic stimulation of mPFC terminals in MBH distinctively increased bite counts in resident/intruder conflicts, whereas the stimulation of similar terminals in LH specifically resulted in violent bites. No other behaviors were affected by stimulations. These findings show that the mPFC controls aggressiveness by behaviorally dedicated neuron populations and pathways, the roles of which may be opposite to those observed in experiments where the role of the whole mPFC (or of its major parts) has been investigated. Overall, our findings suggest that the mPFC organizes into working units that fulfill specific aspects of its wide-ranging roles. Aggression control is associated with many cognitive and emotional aspects processed by the prefrontal cortex (PFC). However, how the prefrontal cortex influences quantitative and qualitative aspects of aggressive behavior remains unclear. We demonstrated that dominantly distinct PFC neuron populations project to the mediobasal hypothalamus (MBH) and the lateral hypothalamus (LH; i.e., two executory centers of species-specific and violent bites, respectively). Stimulation of mPFC fibers in MBH distinctively increased bite counts during fighting, whereas stimulation of similar terminals in LH specifically resulted in violent bites. Overall, our results suggest a direct prefrontal control over the hypothalamus, which is involved in the modulation of quantitative and qualitative aspects of aggressive behavior through distinct prefrontohypothalamic projections.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1523/JNEUROSCI.3234-17.2018DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6596023PMC
April 2018

Glucagon-Like Peptide-1 Excites Firing and Increases GABAergic Miniature Postsynaptic Currents (mPSCs) in Gonadotropin-Releasing Hormone (GnRH) Neurons of the Male Mice via Activation of Nitric Oxide (NO) and Suppression of Endocannabinoid Signaling Pathways.

Front Cell Neurosci 2016 12;10:214. Epub 2016 Sep 12.

Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of SciencesBudapest, Hungary; Department of Neuroscience, Faculty of Information Technology and Bionics, Pázmány Péter Catholic UniversityBudapest, Hungary.

Glucagon-like peptide-1 (GLP-1), a metabolic signal molecule, regulates reproduction, although, the involved molecular mechanisms have not been elucidated, yet. Therefore, responsiveness of gonadotropin-releasing hormone (GnRH) neurons to the GLP-1 analog Exendin-4 and elucidation of molecular pathways acting downstream to the GLP-1 receptor (GLP-1R) have been challenged. Loose patch-clamp recordings revealed that Exendin-4 (100 nM-5 μM) elevated firing rate in hypothalamic GnRH-GFP neurons of male mice via activation of GLP-1R. Whole-cell patch-clamp measurements demonstrated increased excitatory GABAergic miniature postsynaptic currents (mPSCs) frequency after Exendin-4 administration, which was eliminated by the GLP-1R antagonist Exendin-3(9-39) (1 μM). Intracellular application of the G-protein inhibitor GDP-β-S (2 mM) impeded action of Exendin-4 on mPSCs, suggesting direct excitatory action of GLP-1 on GnRH neurons. Blockade of nitric-oxide (NO) synthesis by Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME; 100 μM) or N(5)-[Imino(propylamino)methyl]-L-ornithine hydrochloride (NPLA; 1 μM) or intracellular scavenging of NO by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (CPTIO; 1 mM) partially attenuated the excitatory effect of Exendin-4. Similar partial inhibition was achieved by hindering endocannabinoid pathway using cannabinoid receptor type-1 (CB1) inverse-agonist 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-(1-piperidyl) pyrazole-3-carboxamide (AM251; 1 μM). Simultaneous blockade of NO and endocannabinoid signaling mechanisms eliminated action of Exendin-4 suggesting involvement of both retrograde machineries. Intracellular application of the transient receptor potential vanilloid 1 (TRPV1)-antagonist 2E-N-(2, 3-Dihydro-1,4-benzodioxin-6-yl)-3-[4-(1, 1-dimethylethyl)phenyl]-2-Propenamide (AMG9810; 10 μM) or the fatty acid amide hydrolase (FAAH)-inhibitor PF3845 (5 μM) impeded the GLP-1-triggered endocannabinoid pathway indicating an anandamide-TRPV1-sensitive control of 2-arachidonoylglycerol (2-AG) production. Furthermore, GLP-1 immunoreactive (IR) axons innervated GnRH neurons in the hypothalamus suggesting that GLP-1 of both peripheral and neuronal sources can modulate GnRH neurons. RT-qPCR study confirmed the expression of GLP-1R and neuronal NO synthase (nNOS) mRNAs in GnRH-GFP neurons. Immuno-electron microscopic analysis revealed the presence of nNOS protein in GnRH neurons. These results indicate that GLP-1 exerts direct facilitatory actions via GLP-1R on GnRH neurons and modulates NO and 2-AG retrograde signaling mechanisms that control the presynaptic excitatory GABAergic inputs to GnRH neurons.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fncel.2016.00214DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5018486PMC
September 2016

Estrogen Receptor Beta and 2-arachidonoylglycerol Mediate the Suppressive Effects of Estradiol on Frequency of Postsynaptic Currents in Gonadotropin-Releasing Hormone Neurons of Metestrous Mice: An Acute Slice Electrophysiological Study.

Front Cell Neurosci 2016 29;10:77. Epub 2016 Mar 29.

Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary.

Gonadotropin-releasing hormone (GnRH) neurons are controlled by 17β-estradiol (E2) contributing to the steroid feedback regulation of the reproductive axis. In rodents, E2 exerts a negative feedback effect upon GnRH neurons throughout the estrus-diestrus phase of the ovarian cycle. The present study was undertaken to reveal the role of estrogen receptor subtypes in the mediation of the E2 signal and elucidate the downstream molecular machinery of suppression. The effect of E2 administration at low physiological concentration (10 pM) on GnRH neurons in acute brain slices obtained from metestrous GnRH-green fluorescent protein (GFP) mice was studied under paradigms of blocking or activating estrogen receptor subtypes and interfering with retrograde 2-arachidonoylglycerol (2-AG) signaling. Whole-cell patch clamp recordings revealed that E2 significantly diminished the frequency of spontaneous postsynaptic currents (sPSCs) in GnRH neurons (49.62 ± 7.6%) which effect was abolished by application of the estrogen receptor (ER) α/β blocker Faslodex (1 μM). Pretreatment of the brain slices with cannabinoid receptor type 1 (CB1) inverse agonist AM251 (1 μM) and intracellularly applied endocannabinoid synthesis blocker THL (10 μM) significantly attenuated the effect of E2 on the sPSCs. E2 remained effective in the presence of tetrodotoxin (TTX) indicating a direct action of E2 on GnRH cells. The ERβ specific agonist DPN (10 pM) also significantly decreased the frequency of miniature postsynaptic currents (mPSCs) in GnRH neurons. In addition, the suppressive effect of E2 was completely blocked by the selective ERβ antagonist PHTPP (1 μM) indicating that ERβ is required for the observed rapid effect of the E2. In contrast, the ERα agonist PPT (10 pM) or the membrane-associated G protein-coupled estrogen receptor (GPR30) agonist G1 (10 pM) had no significant effect on the frequency of mPSCs in these neurons. AM251 and tetrahydrolipstatin (THL) significantly abolished the effect of E2 whereas AM251 eliminated the action of DPN on the mPSCs. These data suggest the involvement of the retrograde endocannabinoid mechanism in the rapid direct effect of E2. These results collectively indicate that estrogen receptor beta and 2-AG/CB1 signaling mechanisms are coupled and play an important role in the mediation of the negative estradiol feedback on GnRH neurons in acute slice preparation obtained from intact, metestrous mice.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fncel.2016.00077DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4809870PMC
April 2016

Differential Gene Expression in Gonadotropin-Releasing Hormone Neurons of Male and Metestrous Female Mice.

Neuroendocrinology 2015 29;102(1-2):44-59. Epub 2015 Apr 29.

Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.

Background: Gonadotropin-releasing hormone (GnRH) neurons play a pivotal role in the regulation of the hypothalamic-pituitary gonadal axis in a sex-specific manner. We hypothesized that the differences seen in reproductive functions of males and females are associated with a sexually dimorphic gene expression profile of GnRH neurons.

Methods And Results: We compared the transcriptome of GnRH neurons obtained from intact metestrous female and male GnRH-green fluorescent protein transgenic mice. About 1,500 individual GnRH neurons from each sex were sampled with laser capture microdissection followed by whole-transcriptome amplification for gene expression profiling. Under stringent selection criteria (fold change >1.6, adjusted p value 0.01), Affymetrix Mouse Genome 430 PM array analysis identified 543 differentially expressed genes. Sexual dimorphism was most apparent in gene clusters associated with synaptic communication, signal transduction, cell adhesion, vesicular transport and cell metabolism. To validate microarray results, 57 genes were selected, and 91% of their differential expression was confirmed by real-time PCR. Similarly, 88% of microarray results were confirmed with PCR from independent samples obtained by patch pipette harvesting and pooling of 30 GnRH neurons from each sex. We found significant differences in the expression of genes involved in vesicle priming and docking (Syt1, Cplx1), GABAergic (Gabra3, Gabrb3, Gabrg2) and glutamatergic (Gria1, Grin1, Slc17a6) neurotransmission, peptide signaling (Sstr3, Npr2, Cxcr4) and the regulation of intracellular ion homeostasis (Cacna1, Cacnb1, Cacng5, Kcnq2, Kcnc1).

Conclusion: The striking sexual dimorphism of the GnRH neuron transcriptome we report here contributes to a better understanding of the differences in cellular mechanisms of GnRH neurons in the two sexes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1159/000430818DOI Listing
June 2016

GLP-1 receptor stimulation of the lateral parabrachial nucleus reduces food intake: neuroanatomical, electrophysiological, and behavioral evidence.

Endocrinology 2014 Nov 13;155(11):4356-67. Epub 2014 Aug 13.

Department of Physiology/Metabolic Physiology (J.E.R., R.H.A., K.P.S.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg SE-40530, Sweden; Laboratory of Endocrine Neurobiology (I.F., Z.L.), Institute of Experimental Medicine, Budapest 1083, Hungary; Department of Physiology/Endocrinology (F.A., S.L.D., J.-O.J.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg SE-40530, Sweden; and Cambridge Institute for Medical Research and Wellcome Trust-Medical Research Council Institute of Metabolic Science (F.M.G., F.R.), University of Cambridge, Cambridge CB2 2XY, United Kingdom.

The parabrachial nucleus (PBN) is a key nucleus for the regulation of feeding behavior. Inhibitory inputs from the hypothalamus to the PBN play a crucial role in the normal maintenance of feeding behavior, because their loss leads to starvation. Viscerosensory stimuli result in neuronal activation of the PBN. However, the origin and neurochemical identity of the excitatory neuronal input to the PBN remain largely unexplored. Here, we hypothesize that hindbrain glucagon-like peptide 1 (GLP-1) neurons provide excitatory inputs to the PBN, activation of which may lead to a reduction in feeding behavior. Our data, obtained from mice expressing the yellow fluorescent protein in GLP-1-producing neurons, revealed that hindbrain GLP-1-producing neurons project to the lateral PBN (lPBN). Stimulation of lPBN GLP-1 receptors (GLP-1Rs) reduced the intake of chow and palatable food and decreased body weight in rats. It also activated lPBN neurons, reflected by an increase in the number of c-Fos-positive cells in this region. Further support for an excitatory role of GLP-1 in the PBN is provided by electrophysiological studies showing a remarkable increase in firing of lPBN neurons after Exendin-4 application. We show that within the PBN, GLP-1R activation increased gene expression of 2 energy balance regulating peptides, calcitonin gene-related peptide (CGRP) and IL-6. Moreover, nearly 70% of the lPBN GLP-1 fibers innervated lPBN CGRP neurons. Direct intra-lPBN CGRP application resulted in anorexia. Collectively, our molecular, anatomical, electrophysiological, pharmacological, and behavioral data provide evidence for a functional role of the GLP-1R for feeding control in the PBN.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2014-1248DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4256827PMC
November 2014

Ghrelin decreases firing activity of gonadotropin-releasing hormone (GnRH) neurons in an estrous cycle and endocannabinoid signaling dependent manner.

PLoS One 2013 4;8(10):e78178. Epub 2013 Oct 4.

Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.

The orexigenic peptide, ghrelin is known to influence function of GnRH neurons, however, the direct effects of the hormone upon these neurons have not been explored, yet. The present study was undertaken to reveal expression of growth hormone secretagogue receptor (GHS-R) in GnRH neurons and elucidate the mechanisms of ghrelin actions upon them. Ca(2+)-imaging revealed a ghrelin-triggered increase of the Ca(2+)-content in GT1-7 neurons kept in a steroid-free medium, which was abolished by GHS-R-antagonist JMV2959 (10 µM) suggesting direct action of ghrelin. Estradiol (1nM) eliminated the ghrelin-evoked rise of Ca(2+)-content, indicating the estradiol dependency of the process. Expression of GHS-R mRNA was then confirmed in GnRH-GFP neurons of transgenic mice by single cell RT-PCR. Firing rate and burst frequency of GnRH-GFP neurons were lower in metestrous than proestrous mice. Ghrelin (40 nM-4 μM) administration resulted in a decreased firing rate and burst frequency of GnRH neurons in metestrous, but not in proestrous mice. Ghrelin also decreased the firing rate of GnRH neurons in males. The ghrelin-evoked alterations of the firing parameters were prevented by JMV2959, supporting the receptor-specific actions of ghrelin on GnRH neurons. In metestrous mice, ghrelin decreased the frequency of GABAergic mPSCs in GnRH neurons. Effects of ghrelin were abolished by the cannabinoid receptor type-1 (CB1) antagonist AM251 (1µM) and the intracellularly applied DAG-lipase inhibitor THL (10 µM), indicating the involvement of retrograde endocannabinoid signaling. These findings demonstrate that ghrelin exerts direct regulatory effects on GnRH neurons via GHS-R, and modulates the firing of GnRH neurons in an ovarian-cycle and endocannabinoid dependent manner.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0078178PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3790731PMC
May 2014

Gonadotropin-releasing hormone neurones innervate kisspeptin neurones in the female mouse brain.

Neuroendocrinology 2013 21;98(4):281-9. Epub 2013 Sep 21.

Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.

Kisspeptin (KP) neurones in the rostral periventricular area of the third ventricle (RP3V) and arcuate nucleus (Arc) are important elements in the neuronal circuitry regulating gonadotropin-releasing hormone (GnRH) secretion. KP and co-synthesised neuropeptides/neurotransmitters act directly on GnRH perikarya and processes. GnRH neurones not only form the final output pathway regulating the reproductive functions of the anterior pituitary gland, but also provide neuronal input to sites within the hypothalamus. The current double-label immunohistochemical studies investigated whether GnRH-immunoreactive (IR) projections to the RP3V and/or Arc establish morphological connections with KP-IR neurones at these sites. To optimise visualisation of KP immunoreactivity in, respectively, the RP3V and Arc, ovariectomised (OVX) oestrogen-treated and OVX oil-treated female mice were studied. Confocal laser microscopic analysis of immunofluorescent specimens revealed GnRH-IR axon varicosities in apposition to approximately 25% of the KP-IR neurones in the RP3V and 50% of the KP-IR neurones in the Arc. At the ultrastructural level, GnRH-IR neurones were seen to establish asymmetric synaptic contacts, which usually reflect excitatory neurotransmission, with KP-IR neurones in both the RP3V and Arc. Together with previous data, these findings indicate reciprocal connectivity between both of the KP cell populations and the GnRH neuronal system. The functional significance of the GnRH-IR input to the two separate KP cell populations requires electrophysiological investigation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1159/000355623DOI Listing
November 2014

The amygdala as a neurobiological target for ghrelin in rats: neuroanatomical, electrophysiological and behavioral evidence.

PLoS One 2012 10;7(10):e46321. Epub 2012 Oct 10.

Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.

Here, we sought to demonstrate that the orexigenic circulating hormone, ghrelin, is able to exert neurobiological effects (including those linked to feeding control) at the level of the amygdala, involving neuroanatomical, electrophysiological and behavioural studies. We found that ghrelin receptors (GHS-R) are densely expressed in several subnuclei of the amygdala, notably in ventrolateral (LaVL) and ventromedial (LaVM) parts of the lateral amygdaloid nucleus. Using whole-cell patch clamp electrophysiology to record from cells in the lateral amygdaloid nucleus, we found that ghrelin reduced the frequency of mEPSCs recorded from large pyramidal-like neurons, an effect that could be blocked by co-application of a ghrelin receptor antagonist. In ad libitum fed rats, intra-amygdala administration of ghrelin produced a large orexigenic response that lasted throughout the 4 hr of testing. Conversely, in hungry, fasted rats ghrelin receptor blockade in the amygdala significantly reduced food intake. Finally, we investigated a possible interaction between ghrelin's effects on feeding control and emotional reactivity exerted at the level of the amygdala. In rats allowed to feed during a 1-hour period between ghrelin injection and anxiety testing (elevated plus maze and open field), intra-amygdala ghrelin had no effect on anxiety-like behavior. By contrast, if the rats were not given access to food during this 1-hour period, a decrease in anxiety-like behavior was observed in both tests. Collectively, these data indicate that the amygdala is a valid target brain area for ghrelin where its neurobiological effects are important for food intake and for the suppression of emotional (anxiety-like) behaviors if food is not available.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0046321PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3468604PMC
April 2013

First molecular identification of Mycoplasma ovis and 'Candidatus M. haemoovis' from goat, with lack of haemoplasma PCR-positivity in lice.

Acta Vet Hung 2012 Sep;60(3):355-60

Szent István University Department of Parasitology and Zoology, Faculty of Veterinary Science István u. 2 H-1078 Budapest Hungary.

In order to investigate haemotropic Mycoplasma (formerly Eperythrozoon) infection of goats, blood samples and blood-sucking lice (Linognathus stenopsis) were collected in two goat herds. DNA was extracted from 20 blood samples and from 49 lice allocated to six pools according to host individuals. Haemoplasma infection was detected in four goats by real-time PCR. From the sample with the highest bacterial load the simultaneous presence of M. ovis and 'Candidatus M. haemoovis' was demonstrated by cloning and sequencing. Louse pools were haemoplasma negative, including those from bacteraemic animals. However, not only were Anaplasma inclusion bodies seen in blood smears from goats, but relevant PCR-positivity was also detected among lice. This is the first report of a molecular investigation on caprine haemoplasmas, including analysis of their bloodsucking lice. In summary, goats are susceptible to both molecularly characterised ovine haemoplasmas. On the other hand, goat sucking lice (L. stenopsis) do not appear to be potential vectors of these agents.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1556/AVet.2012.030DOI Listing
September 2012

Estrogen receptor α and β differentially mediate C5aR agonist evoked Ca2+-influx in neurons through L-type voltage-gated Ca2+ channels.

Neurochem Int 2012 May 2;60(6):631-9. Epub 2012 Mar 2.

Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.

Complement C5a is associated primarily with inflammation. The widespread expression of its receptors, C5aR and C5L2 in neuronal cells, however, suggests additional regulatory roles for C5a in the CNS. C5aR agonist (PL37-MAP) evokes Ca(2+)-influx in GT1-7 neuronal cell line and the Ca(2+)-influx is regulated by estradiol. In the present study, we examined further the mechanism of Ca(2+)-influx and the contribution of the two estrogen receptor (ER) isotypes, ERα and ERβ, to estrogenic modulation of intracellular Ca(2+)-content. GT1-7 neurons were treated with isotype selective ER agonists for 24h then C5aR agonist evoked Ca(2+)-responses were measured by Ca(2+)-imaging. Transcriptional changes were followed by real-time PCR. We found that not only estradiol (100 pM), but the ERα selective agonist PPT (100 pM) enhanced the PL37-MAP-evoked Ca(2+)-influx (E2: 215%, PPT: 175%, compared to the PL37-MAP-evoked Ca(2+)-influx). In contrast, the ERβ selective agonist DPN (100 pM) significantly reduced the Ca(2+)-influx (32%). Attenuated Ca(2+)-response (25%) was observed in Ca-free environment and depletion of the Ca(2+)-pool by CPA eliminated the remaining elevation in the Ca(2+)-content, demonstrating that the majority of Ca(2+) originated from the extracellular compartment. L-type voltage-gated Ca(2+)-channel (L-VGCC) blocker nifedipine abolished the Ca(2+)-influx, while R-type Ca(2+)-channel blocker SNX-482 had no effect, exemplifying the predominant role of L-VGCC in this process. Acute pre-treatments (8 min) with ER agonists did not affect the evoked Ca(2+)-influx, revealing that the observed effects of estrogens were genomic. Therefore, we checked estrogenic regulation of C5a receptors and L-VGCC subunits. ER agonists increased C5aR mRNA expression, whereas they differentially regulated C5L2. Estradiol decreased transcription of Ca(v)1.3 L-VGCC subunit. Based on these results we propose that estradiol may differentially modulate C5a-induced Ca(2+)-influx via L-VGCCs in neurons depending on the expression of the two ER isotypes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuint.2012.02.024DOI Listing
May 2012

A simple integrative electrophysiological model of bursting GnRH neurons.

J Comput Neurosci 2012 Feb 11;32(1):119-36. Epub 2011 Jun 11.

Process Control Research Group, Computer and Automation Research Institute, Hungarian Academy of Sciences, P.O. Box 63, 1518 Budapest, Hungary.

In this paper a modular model of the GnRH neuron is presented. For the aim of simplicity, the currents corresponding to fast time scales and action potential generation are described by an impulsive system, while the slower currents and calcium dynamics are described by usual ordinary differential equations (ODEs). The model is able to reproduce the depolarizing afterpotentials, afterhyperpolarization, periodic bursting behavior and the corresponding calcium transients observed in the case of GnRH neurons.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10827-011-0343-yDOI Listing
February 2012

Retrograde endocannabinoid signaling reduces GABAergic synaptic transmission to gonadotropin-releasing hormone neurons.

Endocrinology 2010 Dec 6;151(12):5818-29. Epub 2010 Oct 6.

Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.

Cannabinoids suppress fertility via reducing hypothalamic GnRH output. γ-Aminobutyric acid (GABA)(A) receptor (GABA(A)-R)-mediated transmission is a major input to GnRH cells that can be excitatory. We hypothesized that cannabinoids act via inhibiting GABAergic input. We performed loose-patch electrophysiological studies of acute slices from adult male GnRH-green fluorescent protein transgenic mice. Bath application of type 1 cannabinoid receptor (CB1) agonist WIN55,212 decreased GnRH neuron firing rate. This action was detectable in presence of the glutamate receptor antagonist kynurenic acid but disappeared when bicuculline was also present, indicating GABA(A)-R involvement. In immunocytochemical experiments, CB1-immunoreactive axons formed contacts with GnRH neurons and a subset established symmetric synapses characteristic of GABAergic neurotransmission. Functional studies were continued with whole-cell patch-clamp electrophysiology in presence of tetrodotoxin. WIN55,212 decreased the frequency of GABA(A)-R-mediated miniature postsynaptic currents (mPSCs) (reflecting spontaneous vesicle fusion), which was prevented with the CB1 antagonist AM251, indicating collectively that activation of presynaptic CB1 inhibits GABA release. AM251 alone increased mPSC frequency, providing evidence that endocannabinoids tonically inhibit GABA(A)-R drive onto GnRH neurons. Increased mPSC frequency was absent when diacylglycerol lipase was blocked intracellularly with tetrahydrolipstatin, showing that tonic inhibition is caused by 2-arachidonoylglycerol production of GnRH neurons. CdCl(2) in extracellular solution can maintain both action potentials and spontaneous vesicle fusion. Under these conditions, when endocannabinoid-mediated blockade of spontaneous vesicle fusion was blocked with AM251, GnRH neuron firing increased, revealing an endogenous endocannabinoid brake on GnRH neuron firing. Retrograde endocannabinoid signaling may represent an important mechanism under physiological and pathological conditions whereby GnRH neurons regulate their excitatory GABAergic inputs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2010-0638DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3858799PMC
December 2010

Hodgkin-Huxley type modelling and parameter estimation of GnRH neurons.

Biosystems 2010 Jun 17;100(3):198-207. Epub 2010 Mar 17.

Process Control Research Group, Computer and Automation Research Institute, Hungarian Academy of Sciences, Budapest, Hungary.

In this paper a simple one compartment Hodgkin-Huxley type electrophysiological model of GnRH neurons is presented, that is able to reasonably reproduce the most important qualitative features of the firing pattern, such as baseline potential, depolarization amplitudes, sub-baseline hyperpolarization phenomenon and average firing frequency in response to excitatory current. In addition, the same model provides an acceptable numerical fit of voltage clamp (VC) measurement results. The parameters of the model have been estimated using averaged VC traces, and characteristic values of measured current clamp traces originating from GnRH neurons in hypothalamic slices. The resulting parameter values show a good agreement with literature data in most of the cases. Applying parametric changes, which lead to the increase of baseline potential and enhance cell excitability, the model becomes capable of bursting. The effects of various parameters to burst length have been analyzed by simulation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biosystems.2010.03.004DOI Listing
June 2010

Potential neural progenitor cells in fetal liver and regenerating liver.

Cytotechnology 2008 Mar 5;56(3):209-17. Epub 2008 Jun 5.

Choju Medical Institute, Fukushimura Hospital, Noyori-cho, Toyohashi, 441-8124, Japan,

From unfractionated embryonic mice liver cells, appreciable amount of spherical bodies containing nestin-positive cells were generated in the presence of neuronal growth factors. Following cultivation on poly-D: -lysine/laminin-coated slips, approximately 70% of the cells expressed neuronal markers, and 16% had long processes. Functional analysis of these long-process-bearing cells with the whole-cell patch clamp method showed an inward current in response to glutamate, GABA, and serotonin as the neuronal characteristics. Furthermore, regenerating liver in adult mice also contained nestin-positive cells to the same extent as fetal liver. Regenerating liver could have potential as a source of neural cells for autologous transplantation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10616-008-9150-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2553634PMC
March 2008

Lasting changes in social behavior and amygdala function following traumatic experience induced by a single series of foot-shocks.

Psychoneuroendocrinology 2008 Oct 25;33(9):1198-210. Epub 2008 Jul 25.

Department of Behavioral Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1450 Budapest, POB 67, Hungary.

Neuronal plasticity within the amygdala mediates many behavioral effects of traumatic experience, and this brain region also controls various aspects of social behavior. However, the specific involvement of the amygdala in trauma-induced social deficits has never been systematically investigated. We exposed rats to a single series of electric foot-shocks--a frequently used model of trauma--and studied their behavior in the social avoidance and psychosocial stimulation tests (non-contact versions of the social interaction test) at different time intervals. Social interaction-induced neuronal activation patterns were studied in the prefrontal cortex (orbitofrontal and medial), amygdala (central, medial, and basolateral), dorsal raphe and locus coeruleus. Shock exposure markedly inhibited social behavior in both tests. The effect lasted at least 4 weeks, and amplified over time. As shown by c-Fos immunocytochemistry, social interactions activated all the investigated brain areas. Traumatic experience exacerbated this activation in the central and basolateral amygdala, but not in other regions. The tight correlation between the social deficit and amygdala activation patterns suggest that the two phenomena were associated. A real-time PCR study showed that CRF mRNA expression in the amygdala was temporarily reduced 14, but not 1 and 28 days after shock exposure. In contrast, amygdalar NK1 receptor mRNA expression increased throughout. Thus, the trauma-induced social deficits appear to be associated with, and possibly caused by, plastic changes in fear-related amygdala subdivisions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.psyneuen.2008.06.006DOI Listing
October 2008

The orexigenic effect of ghrelin is mediated through central activation of the endogenous cannabinoid system.

PLoS One 2008 Mar 12;3(3):e1797. Epub 2008 Mar 12.

Department of Endocrinology, Barts and the London School of Medicine and Dentistry, University of London, United Kingdom.

Introduction: Ghrelin and cannabinoids stimulate appetite, this effect possibly being mediated by the activation of hypothalamic AMP-activated protein kinase (AMPK), a key enzyme in appetite and metabolism regulation. The cannabinoid receptor type 1 (CB1) antagonist rimonabant can block the orexigenic effect of ghrelin. In this study, we have elucidated the mechanism of the putative ghrelin-cannabinoid interaction.

Methods: The effects of ghrelin and CB1 antagonist rimonabant in wild-type mice, and the effect of ghrelin in CB1-knockout animals, were studied on food intake, hypothalamic AMPK activity and endogenous cannabinoid content. In patch-clamp electrophysiology experiments the effect of ghrelin was assessed on the synaptic inputs in parvocellular neurons of the hypothalamic paraventricular nucleus, with or without the pre-administration of a CB1 antagonist or of cannabinoid synthesis inhibitors.

Results And Conclusions: Ghrelin did not induce an orexigenic effect in CB1-knockout mice. Correspondingly, both the genetic lack of CB1 and the pharmacological blockade of CB1 inhibited the effect of ghrelin on AMPK activity. Ghrelin increased the endocannabinoid content of the hypothalamus in wild-type mice and this effect was abolished by rimonabant pre-treatment, while no effect was observed in CB1-KO animals. Electrophysiology studies showed that ghrelin can inhibit the excitatory inputs on the parvocellular neurons of the paraventricular nucleus, and that this effect is abolished by administration of a CB1 antagonist or an inhibitor of the DAG lipase, the enzyme responsible for 2-AG synthesis. The effect is also lost in the presence of BAPTA, an intracellular calcium chelator, which inhibits endocannabinoid synthesis in the recorded parvocellular neuron and therefore blocks the retrograde signaling exerted by endocannabinoids. In summary, an intact cannabinoid signaling pathway is necessary for the stimulatory effects of ghrelin on AMPK activity and food intake, and for the inhibitory effect of ghrelin on paraventricular neurons.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0001797PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2258435PMC
March 2008

Estrogen enhances expression of the complement C5a receptor and the C5a-agonist evoked calcium influx in hormone secreting neurons of the hypothalamus.

Neurochem Int 2008 Mar-Apr;52(4-5):846-56. Epub 2007 Sep 29.

Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony u. 43, 1083 Budapest, Hungary.

In the present study we examined presence of the complement C5a receptor (C5aR) in hypothalamic neurosecretory neurons of the rodent brain and effect of estrogen on C5aR expression. Whole cell patch clamp measurements revealed that magnocellular neurons in the supraoptic and paraventricular nuclei of hypothalamic slices of the rats responded to the C5aR-agonist PL37-MAP peptide with calcium ion current pulses. Gonadotropin-releasing hormone (GnRH) producing neurons in slices of the preoptic area of the mice also reacted to the peptide treatment with inward calcium current. PL37-MAP was able to evoke the inward ion current of GnRH neurons in slices from ovariectomized animals. The amplitude of the inward pulses became higher in slices obtained from 17beta-estradiol (E2) substituted mice. Calcium imaging experiments demonstrated that PL37-MAP increased the intracellular calcium content in the culture of the GnRH-producing GT1-7 cell line in a concentration-dependent manner. Calcium imaging also showed that E2 pretreatment elevated the PL37-MAP evoked increase of the intracellular calcium content in the GT1-7 cells. The estrogen receptor blocker Faslodex in the medium prevented the E2-evoked increase of the PL37-MAP-triggered elevation of the intracellular calcium content in the GT1-7 cells demonstrating that the effect of E2 might be related to the presence of estrogen receptor. Real-time PCR experiments revealed that E2 increased the expression of C5aR mRNA in GT1-7 neurons, suggesting that an increased C5aR synthesis could be involved in the estrogenic modulation of calcium response. These data indicate that hypothalamic neuroendocrine neurons can integrate immune and neuroendocrine functions. Our results may serve a better understanding of the inflammatory and neurodegeneratory diseases of the hypothalamus and the related neuroendocrine and autonomic compensatory responses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuint.2007.09.014DOI Listing
June 2008

Increased inhibitory capacity of an anti-C5a complementary peptide following acetylation of N-terminal alanine.

Microbiol Immunol 2007 ;51(4):439-43

Department of Biodefense Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan.

Amino acids 37 to 53 (RAARISLGPRCIKAFTE) of C5a anaphylatoxin form an essential region for C5a function. To target this sequence, we generated a complementary peptide (ASGAPAPGPAGPLRPMF) designated PepA which has a potent inhibitory effect on C5a activity. By introducing an acetyl group at the N-terminal alanine of PepA, an acetylated form was generated which was designated AcPepA. The acetylation resulted in increased inhibition of C5a stimulation of neutrophils as determined by Ca influx. Furthermore, AcPepA partially inhibited the lethal shock induced in mice by intravenous administration of Candida albicans water-soluble mannoprotein-beta-glucan complex. In addition, local skin inflammation in rats caused by an anti-Crry monoclonal antibody was suppressed when AcPepA and the antibody were injected together, while PepA had little inhibitory capacity. The potent inhibitory capacity of AcPepA was also confirmed by a skin reaction of guinea pigs inoculated with recombinant human C5a together with AcPepA.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1348-0421.2007.tb03918.xDOI Listing
January 2008

Estrogen modulates potassium currents and expression of the Kv4.2 subunit in GT1-7 cells.

Neurochem Int 2007 Mar 25;50(4):619-27. Epub 2007 Jan 25.

Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony u. 43, 1083 Budapest, Hungary.

The proper maintenance of reproduction requires the pulsatile secretion of gonadotropin-releasing hormone (GnRH), which is ensured by synchronized periodic firing of multiple GnRH neurons. Both hormone secretion and electrophysiological properties of GnRH cells are influenced by estrogen. The impact of 17beta-estradiol treatment on the function of voltage gated A- and K-type potassium channels, known modulators of firing rate, was therefore examined in our experiments using immortalized GnRH-producing GT1-7 neurons. Whole cell patch clamp recordings showed the absence of the A-type current in GT1-7 cells cultured in estrogen-free medium and after 8h 17beta-estradiol treatment. Exposure of the cells to 17beta-estradiol for 24 and 48 h, respectively, resulted in the appearance of the A-type current. The induction of the A-type current by 17beta-estradiol was dose-related (50 pM to 15 nM range). In contrast, the K-type potassium current was apparent in the estrogen-free environment and 17beta-estradiol administration significantly decreased its amplitude. Co-administration of 17beta-estradiol and estrogen receptor blocker, Faslodex (ICI 182,780; 1 microM) abolished the occurrence of the A-type current. Real-time PCR data demonstrated that expression of the Kv4.2 subunit of the A-type channel was low at 0, 0.5, 2 and 8h, peaked at 24h and diminished at 48 h 17beta-estradiol treatment (15 nM). These data indicate that potassium channels of GT1-7 neurons are regulated by estrogen a mechanism that might contribute to modulation of firing rate and hormone secretion in GnRH neurons.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuint.2006.12.004DOI Listing
March 2007
-->