Publications by authors named "Iliya V Byzov"

3 Publications

  • Page 1 of 1

Smart Design of a pH-Responsive System Based on pHLIP-Modified Magnetite Nanoparticles for Tumor MRI.

ACS Appl Mater Interfaces 2021 Aug 29;13(31):36800-36815. Epub 2021 Jul 29.

Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 620108 Yekaterinburg, Russia.

Magnetic FeO nanoparticles (MNPs) are often used to design agents enhancing contrast in magnetic resonance imaging (MRI) that can be considered as one of the efficient methods for cancer diagnostics. At present, increasing the specificity of the MRI contrast agent accumulation in tumor tissues remains an open question and attracts the attention of a wide range of researchers. One of the modern methods for enhancing the efficiency of contrast agents is the use of molecules for tumor acidic microenvironment targeting, for example, pH-low insertion peptide (pHLIP). We designed novel organosilicon MNPs covered with poly(ethylene glycol) (PEG) and covalently modified by pHLIP. To study the specific features of the binding of pHLIP-modified MNPs to cells, we also obtained nanoconjugates with Cy5 fluorescent dye embedded in the SiO shell. The nanoconjugates obtained were characterized by transmission electron microscopy (TEM), attenuated total reflection (ATR), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), dynamic light scattering (DLS), UV and fluorescence spectrometry, thermogravimetric analysis (TGA), CHN elemental analyses, and vibrating sample magnetometry. Low cytotoxicity and high specificity of cellular uptake of pHLIP-modified MNPs at pH 6.4 versus 7.4 (up to 23-fold) were demonstrated in vitro. The dynamics of the nanoconjugate accumulation in the 4T1 breast cancer orthotopically grown in BALB/c mice and MDA-MB231 xenografts was evaluated in MRI experiments. Biodistribution and biocompatibility studies of the obtained nanoconjugate showed no pathological change in organs and in the blood biochemical parameters of mice after MNP administration. A high accumulation rate of pHLIP-modified MNPs in tumor compared with PEGylated MNPs after their intravenous administration was demonstrated. Thus, we propose a promising approach to design an MRI agent with the tumor acidic microenvironment targeting ability.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
August 2021

PMIDA-Modified FeO Magnetic Nanoparticles: Synthesis and Application for Liver MRI.

Langmuir 2018 03 6;34(11):3449-3458. Epub 2018 Mar 6.

Siberian State Medical University , 2 Moskovsky Trakt , 634050 Tomsk , Russia.

The surface modification of FeO-based magnetic nanoparticles (MNPs) with N-(phosphonomethyl)iminodiacetic acid (PMIDA) was studied, and the possibility of their use as magnetic resonance imaging contrast agents was shown. The effect of the added PMIDA amount, the reaction temperature and time on the degree of immobilization of this reagent on MNPs, and the hydrodynamic characteristics of their aqueous colloidal solutions have been systematically investigated for the first time. It has been shown that the optimum condition for the modification of MNPs is the reaction at 40 °C with an equimolar amount of PMIDA for 3.5 h. The modified MNPs were characterized by X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric, and CHN elemental analyses. The dependence of the hydrodynamic characteristics of the MNP colloidal solutions on the concentration and pH of the medium was studied by the dynamic light scattering method. On the basis of the obtained data, we can assume that the PMIDA molecules are fixed on the surface of the MNPs as a monomolecular layer. The modified MNPs had good colloidal stability and high magnetic properties. The calculated relaxivities r and r were 341 and 102 mmol s, respectively. The possibility of using colloidal solutions of PMIDA-modified MNPs as a T contrast agent for liver studies in vivo (at a dose of 0.6 mg kg) was demonstrated for the first time.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
March 2018

3-Aminopropylsilane-modified iron oxide nanoparticles for contrast-enhanced magnetic resonance imaging of liver lesions induced by .

Int J Nanomedicine 2016;11:4451-4463. Epub 2016 Sep 6.

Siberian State Medical University.

Purpose: Liver fluke causes severe liver damage in an infected human. However, the infection often remains neglected due to the lack of pathognomonic signs. Nanoparticle-enhanced magnetic resonance imaging (MRI) offers a promising technique for detecting liver lesions induced by parasites.

Materials And Methods: Surface modification of iron oxide nanoparticles produced by coprecipitation from a solution of Fe and Fe salts using 3-aminopropylsilane (APS) was carried out. The APS-modified nanoparticles were characterized by transmission electron microscopy, fourier transform infrared spectroscopy, and thermogravimetric analysis. Magnetic resonance properties of MNPs were investigated in vitro and in vivo.

Results: The amount of APS grafted on the surface of nanoparticles (0.60±0.06 mmol g) was calculated based on elemental analysis and infrared spectroscopy data. According to transmission electron microscopy data, there were no essential changes in the structure of nanoparticles during the modification. The APS-modified nanoparticles exhibit high magnetic properties; the calculated relaxivity was 271 mmol s. To obtain suspension with optimal hydrodynamic characteristics, amino groups on the surface of nanoparticles were converted into an ionic form with HCl. Cellular uptake of modified nanoparticles by rat hepatoma cells and human monocytes in vitro was 74.1±4.5 and 10.0±3.7 pg [Fe] per cell, respectively. Low cytotoxicity of the nanoparticles was confirmed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and Annexin V/7-aminoactinomycin D flow cytometry assays. For the first time, magnetic nanoparticles were applied for contrast-enhanced MRI of liver lesions induced by .

Conclusion: The synthesized APS-modified iron oxide nanoparticles showed high efficiency as an MRI contrast agent for the evaluation of opisthorchiasis-related liver damage.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
September 2016