Publications by authors named "Ilaria Kolobova"

5 Publications

  • Page 1 of 1

Lesch-Nyhan disease causes impaired energy metabolism and reduced developmental potential in midbrain dopaminergic cells.

Stem Cell Reports 2021 Jul 1;16(7):1749-1762. Epub 2021 Jul 1.

Psychiatric Genetics Group, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University and Douglas Hospital Research Institute, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Montreal, QC H4H 1R3, Canada. Electronic address:

Mutations in HPRT1, a gene encoding a rate-limiting enzyme for purine salvage, cause Lesch-Nyhan disease which is characterized by self-injury and motor impairments. We leveraged stem cell and genetic engineering technologies to model the disease in isogenic and patient-derived forebrain and midbrain cell types. Dopaminergic progenitor cells deficient in HPRT showed decreased intensity of all developmental cell-fate markers measured. Metabolic analyses revealed significant loss of all purine derivatives, except hypoxanthine, and impaired glycolysis and oxidative phosphorylation. real-time glucose tracing demonstrated increased shunting to the pentose phosphate pathway for de novo purine synthesis at the expense of ATP production. Purine depletion in dopaminergic progenitor cells resulted in loss of RHEB, impairing mTORC1 activation. These data demonstrate dopaminergic-specific effects of purine salvage deficiency and unexpectedly reveal that dopaminergic progenitor cells are programmed to a high-energy state prior to higher energy demands of terminally differentiated cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.stemcr.2021.06.003DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8282463PMC
July 2021

Mutations in ACTL6B Cause Neurodevelopmental Deficits and Epilepsy and Lead to Loss of Dendrites in Human Neurons.

Am J Hum Genet 2019 05 25;104(5):815-834. Epub 2019 Apr 25.

Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK.

We identified individuals with variations in ACTL6B, a component of the chromatin remodeling machinery including the BAF complex. Ten individuals harbored bi-allelic mutations and presented with global developmental delay, epileptic encephalopathy, and spasticity, and ten individuals with de novo heterozygous mutations displayed intellectual disability, ambulation deficits, severe language impairment, hypotonia, Rett-like stereotypies, and minor facial dysmorphisms (wide mouth, diastema, bulbous nose). Nine of these ten unrelated individuals had the identical de novo c.1027G>A (p.Gly343Arg) mutation. Human-derived neurons were generated that recaptured ACTL6B expression patterns in development from progenitor cell to post-mitotic neuron, validating the use of this model. Engineered knock-out of ACTL6B in wild-type human neurons resulted in profound deficits in dendrite development, a result recapitulated in two individuals with different bi-allelic mutations, and reversed on clonal genetic repair or exogenous expression of ACTL6B. Whole-transcriptome analyses and whole-genomic profiling of the BAF complex in wild-type and bi-allelic mutant ACTL6B neural progenitor cells and neurons revealed increased genomic binding of the BAF complex in ACTL6B mutants, with corresponding transcriptional changes in several genes including TPPP and FSCN1, suggesting that altered regulation of some cytoskeletal genes contribute to altered dendrite development. Assessment of bi-alleic and heterozygous ACTL6B mutations on an ACTL6B knock-out human background demonstrated that bi-allelic mutations mimic engineered deletion deficits while heterozygous mutations do not, suggesting that the former are loss of function and the latter are gain of function. These results reveal a role for ACTL6B in neurodevelopment and implicate another component of chromatin remodeling machinery in brain disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2019.03.022DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6507050PMC
May 2019

A Rapid Pipeline to Model Rare Neurodevelopmental Disorders with Simultaneous CRISPR/Cas9 Gene Editing.

Stem Cells Transl Med 2017 03 1;6(3):886-896. Epub 2016 Dec 1.

McGill Group for Suicide Studies, Douglas Hospital Research Institute, Montreal, Quebec, H4H 1R3, Canada.

The development of targeted therapeutics for rare neurodevelopmental disorders (NDDs) faces significant challenges due to the scarcity of subjects and the difficulty of obtaining human neural cells. Here, we illustrate a rapid, simple protocol by which patient derived cells can be reprogrammed to induced pluripotent stem cells (iPSCs) using an episomal vector and differentiated into neurons. Using this platform enables patient somatic cells to be converted to physiologically active neurons in less than two months with minimal labor. This platform includes a method to combine somatic cell reprogramming with CRISPR/Cas9 gene editing at single cell resolution, which enables the concurrent development of clonal knockout or knock-in models that can be used as isogenic control lines. This platform reduces the logistical barrier for using iPSC technology, allows for the development of appropriate control lines for use in rare neurodevelopmental disease research, and establishes a fundamental component to targeted therapeutics and precision medicine. Stem Cells Translational Medicine 2017;6:886-896.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/sctm.16-0158DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5442775PMC
March 2017

Lesch-Nyhan Syndrome: Models, Theories, and Therapies.

Mol Syndromol 2016 Nov 24;7(6):302-311. Epub 2016 Sep 24.

Department of Psychiatry, Douglas Hospital Research Institute, McGill University, Montreal, Que., Canada.

Lesch-Nyhan syndrome (LNS) is a rare X-linked disorder caused by mutations in HPRT1, an important enzyme in the purine salvage pathway. Symptoms of LNS include dystonia, gout, intellectual disability, and self-mutilation. Despite having been characterized over 50 years ago, it remains unclear precisely how deficits in hypoxanthine and guanine recycling can lead to such a profound neurological phenotype. Several studies have proposed different hypotheses regarding the etiology of this disease, and several treatments have been tried in patients, though none have led to a satisfactory explanation of the disease. New technologies such as next-generation sequencing, optogenetics, genome editing, and induced pluripotent stem cells provide a unique opportunity to map the precise sequential pathways leading from genotype to phenotype.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1159/000449296DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5131334PMC
November 2016

Implication of LRRC4C and DPP6 in neurodevelopmental disorders.

Am J Med Genet A 2017 Feb 19;173(2):395-406. Epub 2016 Oct 19.

The Centre for Applied Genomics and Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada.

We performed whole-genome sequencing on an individual from a family with variable psychiatric phenotypes that had a sensory processing disorder, apraxia, and autism. The proband harbored a maternally inherited balanced translocation (46,XY,t(11;14)(p12;p12)mat) that disrupted LRRC4C, a member of the highly specialized netrin G family of axon guidance molecules. The proband also inherited a paternally derived chromosomal inversion that disrupted DPP6, a potassium channel interacting protein. Copy Number (CN) analysis in 14,077 cases with neurodevelopmental disorders and 8,960 control subjects revealed that 60% of cases with exonic deletions in LRRC4C had a second clinically recognizable syndrome associated with variable clinical phenotypes, including 16p11.2, 1q44, and 2q33.1 CN syndromes, suggesting LRRC4C deletion variants may be modifiers of neurodevelopmental disorders. In vitro, functional assessments modeling patient deletions in LRRC4C suggest a negative regulatory role of these exons found in the untranslated region of LRRC4C, which has a single, terminal coding exon. These data suggest that the proband's autism may be due to the inheritance of disruptions in both DPP6 and LRRC4C, and may highlight the importance of the netrin G family and potassium channel interacting molecules in neurodevelopmental disorders. © 2016 Wiley Periodicals, Inc.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.38021DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5833302PMC
February 2017
-->