Publications by authors named "Ilaria Dando"

35 Publications

Editorial: Novel Cancer Treatments Based on Autophagy Modulation.

Front Pharmacol 2021 16;12:650559. Epub 2021 Apr 16.

Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fphar.2021.650559DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8085590PMC
April 2021

Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition).

Autophagy 2021 Jan 8;17(1):1-382. Epub 2021 Feb 8.

University of Crete, School of Medicine, Laboratory of Clinical Microbiology and Microbial Pathogenesis, Voutes, Heraklion, Crete, Greece; Foundation for Research and Technology, Institute of Molecular Biology and Biotechnology (IMBB), Heraklion, Crete, Greece.

In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/15548627.2020.1797280DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7996087PMC
January 2021

Human Chorionic Gonadotropin-Mediated Induction of Breast Cancer Cell Proliferation and Differentiation.

Cells 2021 Jan 29;10(2). Epub 2021 Jan 29.

Paediatric Fertility Lab, Department of Surgery, Dentistry, Paediatrics and Gynaecology, Woman and Child Hospital, Division of Pediatric Surgery, University of Verona, 37134 Verona, Italy.

Human chorionic gonadotropin (hCG) is a hormone that specifically binds to luteinizing hormone receptor (LHR) and exerts several roles, including the support of pregnancy and fetal gonadal steroidogenesis. Since hCG is also expressed by some tumor types, like breast cancer, many efforts have been made to study its role in neoplesia, with some studies showing a cancer-supportive role and others showing a cancer-protective role. A critical examination of the literature highlighted that the in vitro effect of hCG has been tested in the presence of fetal serum, which contains other gonadotropins, in the culture medium. Thus, we hypothesized that the use of serum in the cell culture medium might influence the cell response to the hCG treatment due to the presence of other hormones. Thus, we analyzed the in vitro effect of highly purified hCG on cell proliferation and the activation of the down-stream signal transduction pathway in three breast cancer cell lines, particularly focusing on MCF7, cultured in serum-deprived conditions. Our data show that hCG increases cell proliferation and activates the down-stream target Akt, together with a decrease of the LHR mRNA expression level. Finally, we also tested the differentiation capacity of hCG on MCF7 cancer stem cells (CSCs) and show that it favors the proliferation and differentiation of these cells, thus suggesting that hCG also renders cells more able to colonize and invade the organs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/cells10020264DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7911704PMC
January 2021

Extracellular Matrix Composition Modulates the Responsiveness of Differentiated and Stem Pancreatic Cancer Cells to Lipophilic Derivate of Gemcitabine.

Int J Mol Sci 2020 Dec 22;22(1). Epub 2020 Dec 22.

Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70126 Bari, Italy.

Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease. Gemcitabine (GEM) is used as the gold standard drug in PDAC treatment. However, due to its poor efficacy, it remains urgent to identify novel strategies to overcome resistance issues. In this context, an intense stroma reaction and the presence of cancer stem cells (CSCs) have been shown to influence PDAC aggressiveness, metastatic potential, and chemoresistance.

Methods: We used three-dimensional (3D) organotypic cultures grown on an extracellular matrix composed of Matrigel or collagen I to test the effect of the new potential therapeutic prodrug 4-(N)-stearoyl-GEM, called C18GEM. We analyzed C18GEM cytotoxic activity, intracellular uptake, apoptosis, necrosis, and autophagy induction in both Panc1 cell line (P) and their derived CSCs.

Results: PDAC CSCs show higher sensitivity to C18GEM treatment when cultured in both two-dimensional (2D) and 3D conditions, especially on collagen I, in comparison to GEM. The intracellular uptake mechanisms of C18GEM are mainly due to membrane nucleoside transporters' expression and fatty acid translocase CD36 in Panc1 P cells and to clathrin-mediated endocytosis and CD36 in Panc1 CSCs. Furthermore, C18GEM induces an increase in cell death compared to GEM in both cell lines grown on 2D and 3D cultures. Finally, C18GEM stimulated protective autophagy in Panc1 P and CSCs cultured on 3D conditions.

Conclusion: We propose C18GEM together with autophagy inhibitors as a valid alternative therapeutic approach in PDAC treatment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms22010029DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7792955PMC
December 2020

Effects of CD20 antibodies and kinase inhibitors on B-cell receptor signalling and survival of chronic lymphocytic leukaemia cells.

Br J Haematol 2021 01 20;192(2):333-342. Epub 2020 Nov 20.

Research Center LURM (Interdepartmental Laboratory of Medical Research), University of Verona, Verona, Italy.

Recently, clinical trial results have established inhibitors of B-cell receptor (BCR)-associated kinase (BAKi), with or without CD20 moniclonal antibodies (mAbs), as the preferred first-line treatment for most chronic lymphocytic leukaemia (CLL) patients. Using phosphospecific flow cytometry, we showed that in leukaemic cells from CLL patients the CD20 therapeutic antibodies - rituximab, ofatumumab, and obinutuzumab - inhibited BCR signalling pathways targeting preferentially pBTK - but not BTK - and pAKT. On the contrary, ibrutinib and idelalisib reduced pBTK to a higher extent than pBTK . The strong reduction of pAKT induced by idelalisib was enhanced by its combination with rituximab or ofatumumab. Moreover, CD20 mAbs and BAKi induced the death of leukaemia cells that was significantly potentiated by their combination. Analysis of the enhancement of cell death in these combinations revealed an approximately additive enhancement induced by rituximab or obinutuzumab combined with ibrutinib or idelalisib. Taken together, our data identified negative regulatory effects of CD20 mAbs and their combinations with BAKi on BCR signalling and cell survival in CLL. In conclusion, this study advances our understanding of mechanisms of action of CD20 mAbs as single agents or in combination with BAKi and could inform on the potential of combined therapies in ongoing and future clinical trials in patients with CLL.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/bjh.17139DOI Listing
January 2021

Nanomaterials for Autophagy-Related miRNA-34a Delivery in Cancer Treatment.

Front Pharmacol 2020 24;11:1141. Epub 2020 Jul 24.

Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.

Autophagy is an evolutionary conserved physiological process with a fundamental role during development, differentiation, and survival of eukaryotic cells. On the other hand, autophagy dysregulation is observed in many pathological conditions, including cancer. In particular, tumor growth and progression are accompanied and promoted by increased autophagy that allows cancer cells to escape apoptosis and to proliferate also in harsh microenvironments. It is, therefore, clear that the impairment of the autophagic process may represent a valid strategy to inhibit or reduce cancer growth and progression. Among the plethora of molecular players controlling cancer growth, a group of small endogenous noncoding RNAs called microRNAs (miRNAs) has recently emerged. In fact, miRNAs can act as either oncogenes or oncosuppressors depending on their target genes. Moreover, among miRNAs, miRNA-34a has been connected with both tumor repression and autophagy regulation, and its expression is frequently lost in many cancers. Therefore, enforced expression of miRNA-34a in cancer cells may represent a valid strategy to reduce cancer growth. However, such strategy is limited by the fast biodegradation and short half-life of miRNA-34a and by the lack of an efficient intracellular delivery system. The following review describes the autophagic process and its role in cancer as well as the role of miRNAs in general and miRNA-34a in particular in regulating tumor growth by modulating autophagy. Finally, we describe the use of nanoparticles as a promising strategy to selectively deliver miRNA-34a to tumor cells for therapeutic and diagnostic purposes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fphar.2020.01141DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7393066PMC
July 2020

Progressively De-Differentiated Pancreatic Cancer Cells Shift from Glycolysis to Oxidative Metabolism and Gain a Quiescent Stem State.

Cells 2020 06 28;9(7). Epub 2020 Jun 28.

Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy.

Pancreatic ductal adenocarcinoma (PDAC) is typically characterized by high chemoresistance and metastatic spread, features mainly attributable to cancer stem cells (CSCs). It is of central interest the characterization of CSCs and, in particular, the study of their metabolic features in order to selectively identify their peculiarities for an efficient therapeutic approach. In this study, CSCs have been obtained by culturing different PDAC cell lines with a specific growth medium. Cells were characterized for the typical stem/mesenchymal properties at short-, medium-, and long-term culture. Metabolomics, proteomics, analysis of oxygen consumption rate in live cells, and the effect of the inhibition of lactate transporter on cell proliferation have been performed to delineate the metabolism of CSCs. We show that gradually de-differentiated pancreatic cancer cells progressively increase the expression of both stem and epithelial-to-mesenchymal transition markers, shift their metabolism from a glycolytic to an oxidative one, and lastly gain a quiescent state. These quiescent stem cells are characterized by high chemo-resistance, clonogenic ability, and metastatic potential. Re-differentiation reverts these features, re-activating their proliferative capacity and glycolytic metabolism, which generally correlates with high aggressiveness. These observations add an important piece of knowledge to the comprehension of the biology of CSCs, whose metabolic plasticity could be exploited for the generation of promising and selective therapeutic approaches for PDAC patients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/cells9071572DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7408749PMC
June 2020

Regulation of succinate dehydrogenase and role of succinate in cancer.

Semin Cell Dev Biol 2020 02 1;98:4-14. Epub 2019 May 1.

Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy.

Succinate dehydrogenase (SDH) has been classically considered a mitochondrial enzyme with the unique property to participate in both the citric acid cycle and the electron transport chain. However, in recent years, several studies have highlighted the role of the SDH substrate, i.e. succinate, in biological processes other than metabolism, tumorigenesis being the most remarkable. For this reason, SDH has now been defined a tumor suppressor and succinate an oncometabolite. In this review, we discuss recent findings regarding alterations in SDH activity leading to succinate accumulation, which include SDH mutations, regulation of mRNA expression, post-translational modifications and endogenous SDH inhibitors. Further, we report an extensive examination of the role of succinate in cancer development through the induction of epigenetic and metabolic alterations and the effects on epithelial to mesenchymal transition, cell migration and invasion, and angiogenesis. Finally, we have focused on succinate and SDH as diagnostic markers for cancers having altered SDH expression/activity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.semcdb.2019.04.013DOI Listing
February 2020

Oncometabolites in cancer aggressiveness and tumour repopulation.

Biol Rev Camb Philos Soc 2019 08 10;94(4):1530-1546. Epub 2019 Apr 10.

Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy.

Tumour repopulation is recognized as a crucial event in tumour relapse where therapy-sensitive dying cancer cells influence the tumour microenvironment to sustain therapy-resistant cancer cell growth. Recent studies highlight the role of the oncometabolites succinate, fumarate, and 2-hydroxyglutarate in the aggressiveness of cancer cells and in the worsening of the patient's clinical outcome. These oncometabolites can be produced and secreted by cancer and/or surrounding cells, modifying the tumour microenvironment and sustaining an invasive neoplastic phenotype. In this review, we report recent findings concerning the role in cancer development of succinate, fumarate, and 2-hydroxyglutarate and the regulation of their related enzymes succinate dehydrogenase, fumarate hydratase, and isocitrate dehydrogenase. We propose that oncometabolites are crucially involved in tumour repopulation. The study of the mechanisms underlying the relationship between oncometabolites and tumour repopulation is fundamental for identifying efficient anti-cancer therapeutic strategies and novel serum biomarkers in order to overcome cancer relapse.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/brv.12513DOI Listing
August 2019

Mutant p53 blocks SESN1/AMPK/PGC-1α/UCP2 axis increasing mitochondrial O· production in cancer cells.

Br J Cancer 2018 10 15;119(8):994-1008. Epub 2018 Oct 15.

Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy.

Background: The TP53 tumor suppressor gene is the most frequently altered gene in tumors and mutant p53 gain-of-function isoforms actively promote cancer malignancy.

Methods: A panel of wild-type and mutant p53 cancer cell lines of different tissues, including pancreas, breast, skin, and lung were used, as well as chronic lymphocytic leukemia (CLL) patients with different TP53 gene status. The effects of mutant p53 were evaluated by confocal microscopy, reactive oxygen species production assay, immunoblotting, and quantitative reverse transcription polymerase chain reaction after cellular transfection.

Results: We demonstrate that oncogenic mutant p53 isoforms are able to inhibit SESN1 expression and consequently the amount of SESN1/AMPK complex, resulting in the downregulation of the AMPK/PGC-1α/UCP2 axis and mitochondrial O-· production. We also show a correlation between the decrease of reduced thiols with a poorer clinical outcome of CLL patients bearing mutant TP53 gene. The restoration of the mitochondrial uncoupling protein 2 (UCP2) expression, as well as the addition of the radical scavenger N-acetyl-L-cysteine, reversed the oncogenic effects of mutant p53 as cellular hyper-proliferation, antiapoptotic effect, and resistance to drugs.

Conclusions: The inhibition of the SESN1/AMPK/PGC-1α/UCP2 axis contributes to the pro-oxidant and oncogenic effects of mutant p53, suggesting pro-oxidant drugs as a therapeutic approach for cancer patients bearing mutant TP53 gene.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41416-018-0288-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6203762PMC
October 2018

Pancreatic cancer stem cell proliferation is strongly inhibited by diethyldithiocarbamate-copper complex loaded into hyaluronic acid decorated liposomes.

Biochim Biophys Acta Gen Subj 2019 01 26;1863(1):61-72. Epub 2018 Sep 26.

Department of Drug Science and Technology, University of Torino, Italy. Electronic address:

Background: Pancreatic cancer stem cells (CSCs) are responsible for resistance to standard therapy, metastatic potential, and disease relapse following treatments. The current therapy for pancreatic ductal adenocarcinoma (PDAC) preferentially targets the more differentiated cancer cell population, leaving CSCs as a cell source for tumor mass formation and recurrence. For this reason, there is an urgent need to improve current therapies and develop novel CSC-targeted therapeutic approaches.

Methods: Hyaluronic acid (HA) decorated liposomes, containing diethyldithiocarbamate‑copper (Cu(DDC)), able to target the specific CSC marker CD44 receptor were prepared by ion gradient technique and fully characterized. Their antiproliferative effect was evaluated on pancreatic CSCs derived from PDAC cell lines or patients. To clarify the mechanism of action of Cu(DDC) liposomes, ROS level neutralization assay in the presence of N-acetyl-L-cysteine was performed.

Results: Liposomes showed high encapsulation efficiency and Cryo-TEM analysis revealed the presence of Cu(DDC) crystals in the aqueous core of liposomes. In vitro test on pancreatic CSCs derived from PDAC cell lines or patients showed high ROS mediated anticancer activity of HA decorated liposomes. The sphere formation capability of CSCs obtained from patients was drastically reduced by liposomal formulations containing Cu(DDC).

Conclusions: The obtained results show that the encapsulation of Cu(DDC) complex in HA decorated liposomes strongly increases its anti-proliferative activity on pancreatic CSCs.

General Significance: This paper describes for the first time the use of HA decorated liposomes containing Cu(DDC) against pancreatic CSCs and opens the way to the development of nanomedicine based CSC-targeted therapeutic approaches.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbagen.2018.09.018DOI Listing
January 2019

Extracellular matrix composition modulates PDAC parenchymal and stem cell plasticity and behavior through the secretome.

FEBS J 2018 06 27;285(11):2104-2124. Epub 2018 Apr 27.

Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Italy.

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers. Its aggressiveness is driven by an intense fibrotic desmoplastic reaction in which the increasingly collagen I-rich extracellular matrix (ECM) and several cell types, including cancer stem cells (CSCs), create a tumor-supportive environment. However, how ECM composition regulates CSC dynamics and their relationship with the principle parenchymal tumor population to promote early invasive growth is not yet characterized. For this, we utilized a platform of 3D organotypic cultures composed of laminin-rich Matrigel, representative of an early tumor, plus increasing concentrations of collagen I to simulate malignant stroma progression. As ECM collagen I increases, CSCs progress from a rapidly growing, vascular phenotype to a slower growing, avascular phase, while maintaining their endothelial-like gene signatures. This transition is supported autocrinically by the CSCs and paracrinically by the parenchymal cells via their ECM-dependent secretomes. Indeed, when growing on an early tumor ECM, the CSCs are dedicated toward the preparation of a vascular niche by (a) activating their growth program, (b) secreting high levels of proangiogenic factors which stimulate both angiogenesis and vasculogenic mimicry, and (c) overexpressing VEGFR-2, which is activated by VEGF secreted by both the CSC and parenchymal cells. On Matrigel, the more differentiated parenchymal tumor cell population had reduced growth but a high invasive capacity. This concerted high local invasion of parenchymal cells into the CSC-derived vascular network suggests that a symbiotic relationship between the parenchymal cells and the CSCs underlies the initiation and maintenance of early PDAC infiltration and metastasis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/febs.14471DOI Listing
June 2018

Low expression confers redox hypersensitivity and identifies an indolent clinical behavior in CLL.

Blood 2018 04 21;131(17):1942-1954. Epub 2018 Feb 21.

Research Center LURM, Interdepartmental Laboratory of Medical Research.

B-cell receptor (BCR) signaling is a key determinant of variable clinical behavior and a target for therapeutic interventions in chronic lymphocytic leukemia (CLL). Endogenously produced HO is thought to fine-tune the BCR signaling by reversibly inhibiting phosphatases. However, little is known about how CLL cells sense and respond to such redox cues and what effect they have on CLL. We characterized the response of BCR signaling proteins to exogenous HO in cells from patients with CLL, using phosphospecific flow cytometry. Exogenous HO in the absence of BCR engagement induced a signaling response of BCR proteins that was higher in CLL with favorable prognostic parameters and an indolent clinical course. We identified low expression as a possible mechanism accounting for redox signaling hypersensitivity. Decreased catalase could cause an escalated accumulation of exogenous HO in leukemic cells with a consequent greater inhibition of phosphatases and an increase of redox signaling sensitivity. Moreover, lower levels of were significantly associated with a slower progression of the disease. In leukemic cells characterized by redox hypersensitivity, we also documented an elevated accumulation of ROS and an increased mitochondrial amount. Taken together, our data identified redox sensitivity and metabolic profiles that are linked to differential clinical behavior in CLL. This study advances our understanding of the redox and signaling heterogeneity of CLL and provides the rationale for the development of therapies targeting redox pathways in CLL.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood-2017-08-800466DOI Listing
April 2018

UCP2 inhibition induces ROS/Akt/mTOR axis: Role of GAPDH nuclear translocation in genipin/everolimus anticancer synergism.

Free Radic Biol Med 2017 12 27;113:176-189. Epub 2017 Sep 27.

Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy. Electronic address:

Several studies indicate that mitochondrial uncoupling protein 2 (UCP2) plays a pivotal role in cancer development by decreasing reactive oxygen species (ROS) produced by mitochondrial metabolism and by sustaining chemoresistance to a plethora of anticancer drugs. Here, we demonstrate that inhibition of UCP2 triggers Akt/mTOR pathway in a ROS-dependent mechanism in pancreatic adenocarcinoma cells. This event reduces the antiproliferative outcome of UCP2 inhibition by genipin, creating the conditions for the synergistic counteraction of cancer cell growth with the mTOR inhibitor everolimus. Inhibition of pancreatic adenocarcinoma cell growth and induction of apoptosis by genipin and everolimus treatment are functionally related to nuclear translocation of the cytosolic glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH). The synthetic compound (S)-benzyl-2-amino-2-(S)-3-bromo-4,5-dihydroisoxazol-5-yl-acetate (AXP3009), which binds GAPDH at its redox-sensitive Cys152, restores cell viability affected by the combined treatment with genipin and everolimus, suggesting a role for ROS production in the nuclear translocation of GAPDH. Caspase-mediated apoptosis by genipin and everolimus is further potentiated by the autophagy inhibitor 3-methyladenine revealing a protective role for Beclin1-mediated autophagy induced by the treatment. Mice xenograft of pancreatic adenocarcinoma further confirmed the antiproliferative outcome of drug combination without toxic effects for animals. Tumor masses from mice injected with UCP2 and mTOR inhibitors revealed a strong reduction in tumor volume and number of mitosis associated with a marked GAPDH nuclear positivity. Altogether, these results reveal novel mechanisms through which UCP2 promotes cancer cell proliferation and support the combined inhibition of UCP2 and of Akt/mTOR pathway as a novel therapeutic strategy in the treatment of pancreatic adenocarcinoma.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2017.09.022DOI Listing
December 2017

Secreted molecules inducing epithelial-to-mesenchymal transition in cancer development.

Semin Cell Dev Biol 2018 06 30;78:62-72. Epub 2017 Jun 30.

Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy.

The epithelial-mesenchymal transition (EMT) is a biologic process that allows a polarized epithelial cell to undergo multiple biochemical changes that enable it to assume a mesenchymal cell phenotype. EMT is involved in embryo development, wound healing, tissue regeneration, organ fibrosis and has also been proposed as the critical mechanism for the acquisition of malignant phenotypes by epithelial cancer cells. These cells have been shown to acquire a mesenchymal phenotype when localized at the invasive front of primary tumours increasing aggressiveness, invasiveness, metastatic potential and resistance to chemotherapy. There is now increasing evidence demonstrating that a crucial role in the development of this process is played by factors secreted by cells of the tumour microenvironment or by the tumour cells themselves. This review summarises the current knowledge of EMT induction in cancer by paracrine or autocrine mechanisms, by exosomes or free proteins and miRNAs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.semcdb.2017.06.027DOI Listing
June 2018

The antioxidant uncoupling protein 2 stimulates hnRNPA2/B1, GLUT1 and PKM2 expression and sensitizes pancreas cancer cells to glycolysis inhibition.

Free Radic Biol Med 2016 12 27;101:305-316. Epub 2016 Oct 27.

Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy. Electronic address:

Several evidence indicate that metabolic alterations play a pivotal role in cancer development. Here, we report that the mitochondrial uncoupling protein 2 (UCP2) sustains the metabolic shift from mitochondrial oxidative phosphorylation (mtOXPHOS) to glycolysis in pancreas cancer cells. Indeed, we show that UCP2 sensitizes pancreas cancer cells to the treatment with the glycolytic inhibitor 2-deoxy-D-glucose. Through a bidimensional electrophoresis analysis, we identify 19 protein species differentially expressed after treatment with the UCP2 inhibitor genipin and, by bioinformatic analyses, we show that these proteins are mainly involved in metabolic processes. In particular, we demonstrate that the antioxidant UCP2 induces the expression of hnRNPA2/B1, which is involved in the regulation of both GLUT1 and PKM2 mRNAs, and of lactate dehydrogenase (LDH) increasing the secretion of L-lactic acid. We further demonstrate that the radical scavenger N-acetyl-L-cysteine reverts hnRNPA2/B1 and PKM2 inhibition by genipin indicating a role for reactive oxygen species in the metabolic reprogramming of cancer cells mediated by UCP2. We also observe an UCP2-dependent decrease in mtOXPHOS complex I (NADH dehydrogenase), complex IV (cytochrome c oxidase), complex V (ATPase) and in mitochondrial oxygen consumption, suggesting a role for UCP2 in the counteraction of pancreatic cancer cellular respiration. All these results reveal novel mechanisms through which UCP2 promotes cancer cell proliferation with the concomitant metabolic shift from mtOXPHOS to the glycolytic pathway.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2016.10.499DOI Listing
December 2016

Proteomic analysis of pancreatic cancer stem cells: Functional role of fatty acid synthesis and mevalonate pathways.

J Proteomics 2017 01 13;150:310-322. Epub 2016 Oct 13.

University of Verona, Department of Neuroscience, Biomedicine and Movement, Verona 37134, Italy.

Recently, we have shown that the secretome of pancreatic cancer stem cells (CSCs) is characterized by proteins that participate in cancer differentiation, invasion, and metastasis. However, the differentially expressed intracellular proteins that lead to the specific characteristics of pancreatic CSCs have not yet been identified, and as a consequence the deranged metabolic pathways are yet to be elucidated. To identify the modulated proteins of pancreatic CSCs, iTRAQ-based proteomic analysis was performed to compare the proteome of Panc1 CSCs and Panc1 parental cells, identifying 230 modulated proteins. Pathway analysis revealed activation of glycolysis, the pentose phosphate pathway, the pyruvate-malate cycle, and lipid metabolism as well as downregulation of the Krebs cycle, the splicesome and non-homologous end joining. These findings were supported by metabolomics and immunoblotting analysis. It was also found that inhibition of fatty acid synthase by cerulenin and of mevalonate pathways by atorvastatin have a greater anti-proliferative effect on cancer stem cells than parental cells. Taken together, these results clarify some important aspects of the metabolic network signature of pancreatic cancer stem cells, shedding light on key and novel therapeutic targets and suggesting that fatty acid synthesis and mevalonate pathways play a key role in ensuring their viability.

Biological Significance: To better understand the altered metabolic pathways of pancreatic cancer stem cells (CSCs), a comprehensive proteomic analysis and metabolite profiling investigation of Panc1 and Panc1 CSCs were carried out. The findings obtained indicate that Panc1 CSCs are characterized by upregulation of glycolysis, pentose phosphate pathway, pyruvate-malate cycle, and lipid metabolism and by downregulation of Krebs cycle, spliceosome and non-homologous end joining. Moreover, fatty acid synthesis and mevalonate pathways are shown to play a critical contribution to the survival of pancreatic cancer stem cells. This study is helpful for broadening the knowledge of pancreatic cancer stem cells and could accelerate the development of novel therapeutic strategies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jprot.2016.10.002DOI Listing
January 2017

Mutant p53 and mTOR/PKM2 regulation in cancer cells.

IUBMB Life 2016 09 7;68(9):722-6. Epub 2016 Jul 7.

Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy.

Mutations of TP53 gene are the most common feature in aggressive malignant cells. In addition to the loss of the tumor suppressive role of wild-type p53, hotspot mutant p53 isoforms display oncogenic proprieties notoriously referred as gain of functions (GOFs) which result in chemoresistance to therapies, genomic instability, aberrant deregulation of cell cycle progression, invasiveness and enhanced metastatic potential, and finally, in patient poor survival rate. The identification of novel functional oncogenic pathways regulated by mutant p53 represent and intriguing topic for emerging therapies against a broad spectrum of cancer types bearing mutant TP53 gene. Mammalian target of rapamycin (mTOR), as well as pyruvate kinase isoform M2 (PKM2) are master regulators of cancer growth, metabolism, and cell proliferation. Herein, we report that GOF mutant R175H and R273H p53 proteins trigger PKM2 phosphorylation on Tyr 105 through the involvement of mTOR signaling. Our data, together with the newly discovered connection between mutant p53 and mTOR stimulation, raise important implications for the potential therapeutic use of synthetic drugs inhibiting mTOR/PKM2 axis in cancer cells bearing mutant TP53 gene. We further hypothesize that mTOR/PKM2 pathway stimulation serves to sustain the oncogenic activity of mutant p53 through both the enhancement of chemoresistance and of aerobic glycolysis of cancer cells. © 2016 IUBMB Life, 68(9):722-726, 2016.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/iub.1534DOI Listing
September 2016

Mutant p53 proteins counteract autophagic mechanism sensitizing cancer cells to mTOR inhibition.

Mol Oncol 2016 08 12;10(7):1008-29. Epub 2016 Apr 12.

Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy. Electronic address:

Mutations in TP53 gene play a pivotal role in tumorigenesis and cancer development. Here, we report that gain-of-function mutant p53 proteins inhibit the autophagic pathway favoring antiapoptotic effects as well as proliferation of pancreas and breast cancer cells. We found that mutant p53 significantly counteracts the formation of autophagic vesicles and their fusion with lysosomes throughout the repression of some key autophagy-related proteins and enzymes as BECN1 (and P-BECN1), DRAM1, ATG12, SESN1/2 and P-AMPK with the concomitant stimulation of mTOR signaling. As a paradigm of this mechanism, we show that atg12 gene repression was mediated by the recruitment of the p50 NF-κB/mutant p53 protein complex onto the atg12 promoter. Either mutant p53 or p50 NF-κB depletion downregulates atg12 gene expression. We further correlated the low expression levels of autophagic genes (atg12, becn1, sesn1, and dram1) with a reduced relapse free survival (RFS) and distant metastasis free survival (DMFS) of breast cancer patients carrying TP53 gene mutations conferring a prognostic value to this mutant p53-and autophagy-related signature. Interestingly, the mutant p53-driven mTOR stimulation sensitized cancer cells to the treatment with the mTOR inhibitor everolimus. All these results reveal a novel mechanism through which mutant p53 proteins promote cancer cell proliferation with the concomitant inhibition of autophagy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molonc.2016.04.001DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5423176PMC
August 2016

Secretome protein signature of human pancreatic cancer stem-like cells.

J Proteomics 2016 Mar 2;136:1-12. Epub 2016 Feb 2.

University of Verona, Department of Biotechnology, Proteomics and Mass Spectrometry Laboratory, Verona 37134, Italy.

Unlabelled: Emerging research has demonstrated that pancreatic ductal adenocarcinoma (PDAC) contains a sub-population of cancer stem cells (CSCs) characterized by self-renewal, anchorage-independent-growth, long-term proliferation and chemoresistance. The secretome analysis of pancreatic CSCs has not yet been performed, although it may provide insight into tumour/microenvironment interactions and intracellular processes, as well as to identify potential biomarkers. To characterize the secreted proteins of pancreatic CSCs, we performed an iTRAQ-based proteomic analysis to compare the secretomes of Panc1 cancer stem-like cells (Panc1 CSCs) and parental cell line. A total of 72 proteins were found up-/down-regulated in the conditioned medium of Panc1 CSCs. The pathway analysis revealed modulation of vital physiological pathways including glycolysis, gluconeogenesis and pentose phosphate. Through ELISA immunoassays we analysed the presence of the three proteins most highly secreted by Panc1 CSCs (ceruloplasmin, galectin-3, and MARCKS) in sera of PDAC patient. ROC curve analysis suggests ceruloplasmin as promising marker for patients negative for CA19-9. Overall, our study provides a systemic secretome analysis of pancreatic CSCs revealing a number of secreted proteins which participate in pathological conditions including cancer differentiation, invasion and metastasis. They may serve as a valuable pool of proteins from which biomarkers and therapeutic targets can be identified.

Biological Significance: The secretome of CSCs is a rich reservoir of biomarkers of cancer progression and molecular therapeutic targets, and thus is a topic of great interest for cancer research. The secretome analysis of pancreatic CSCs has not yet been performed. Recently, our group has demonstrated that Panc-1 CSCs isolated from parental cell line by using the CSC selective medium, represent a model of great importance to deepen the understanding of the biology of pancreatic adenocarcinoma. To our knowledge, this is the first proteomic study of pancreatic CSC secretome. We performed an iTRAQ-based analysis to compare the secretomes of Panc1 CSCs and Panc1 parental cell line and identified a total of 43 proteins secreted at higher level by pancreatic cancer stem cells. We found modulation of different vital physiological pathways (such as glycolysis and gluconeogenesis, pentose phosphate pathway) and the involvement of CSC secreted proteins (for example 72kDa type IV collagenase, galectin-3, alpha-actinin-4, and MARCKS) in pathological conditions including cancer differentiation, invasion and metastasis. By ELISA verification we found that MARCKS and ceruloplasmin discriminate between controls and PDAC patients; in addition ROC curve analyses indicate that MARCKS does not have diagnostic accuracy, while ceruloplasmin could be a promising marker only for patients negative for CA19-9. We think that the findings reported in our manuscript advance the understanding of the pathways implicated in tumourigenesis, metastasis and chemoresistance of pancreatic cancer, and also identify a pool of proteins from which novel candidate diagnostic and therapeutic biomarkers could be discovered.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jprot.2016.01.017DOI Listing
March 2016

The metabolic landscape of cancer stem cells.

IUBMB Life 2015 Sep 4;67(9):687-93. Epub 2015 Sep 4.

Department of Life and Reproduction Sciences, Section of Biochemistry, University of Verona, Verona, Italy.

Cancer stem cells (CSCs) are a sub-population of quiescent cells endowed with self-renewal properties that can sustain the malignant behavior of the tumor mass giving rise to more differentiated cancer cells. For this reason, the specific killing of CSCs represents one of the most important challenges of the modern molecular oncology. However, their particular resistance to traditional chemotherapy and radiotherapy imposes a thorough understanding of their biological and biochemical features. The metabolic peculiarities of CSCs may be a therapeutic and diagnostic opportunity in cancer research. In this review, we summarize the most significant discoveries on the metabolism of CSCs describing and critically analyzing the studies supporting either glycolysis or mitochondrial oxidative phosphorylation as a primary source of energy for CSCs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/iub.1426DOI Listing
September 2015

Antioxidant Mechanisms and ROS-Related MicroRNAs in Cancer Stem Cells.

Oxid Med Cell Longev 2015 29;2015:425708. Epub 2015 Apr 29.

Department of Life and Reproduction Sciences, Biochemistry Section, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy.

Increasing evidence indicates that most of the tumors are sustained by a distinct population of cancer stem cells (CSCs), which are responsible for growth, metastasis, invasion, and recurrence. CSCs are typically characterized by self-renewal, the key biological process allowing continuous tumor proliferation, as well as by differentiation potential, which leads to the formation of the bulk of the tumor mass. CSCs have several advantages over the differentiated cancer cell populations, including the resistance to radio- and chemotherapy, and their gene-expression programs have been shown to correlate with poor clinical outcome, further supporting the relevance of stemness properties in cancer. The observation that CSCs possess enhanced mechanisms of protection from reactive oxygen species (ROS) induced stress and a different metabolism from the differentiated part of the tumor has paved the way to develop drugs targeting CSC specific signaling. In this review, we describe the role of ROS and of ROS-related microRNAs in the establishment and maintenance of self-renewal and differentiation capacities of CSCs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1155/2015/425708DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4429193PMC
April 2016

Mitochondrial uncoupling protein 2 and pancreatic cancer: a new potential target therapy.

World J Gastroenterol 2015 Mar;21(11):3232-8

Massimo Donadelli, Ilaria Dando, Elisa Dalla Pozza, Marta Palmieri, Department of Life and Reproduction Sciences, Biochemistry Section, University of Verona, 37134 Verona, Italy.

Overall 5-years survival of pancreatic cancer patients is nearly 5%, making this cancer type one of the most lethal neoplasia. Furthermore, the incidence rate of pancreatic cancer has a growing trend that determines a constant increase in the number of deceases caused by this pathology. The poor prognosis of pancreatic cancer is mainly caused by delayed diagnosis, early metastasis of tumor, and resistance to almost all tested cytotoxic drugs. In this respect, the identification of novel potential targets for new and efficient therapies should be strongly encouraged in order to improve the clinical management of pancreatic cancer. Some studies have shown that the mitochondrial uncoupling protein 2 (UCP2) is over-expressed in pancreatic cancer as compared to adjacent normal tissues. In addition, recent discoveries established a key role of UCP2 in protecting cancer cells from an excessive production of mitochondrial superoxide ions and in the promotion of cancer cell metabolic reprogramming, including aerobic glycolysis stimulation, promotion of cancer progression. These observations together with the demonstration that UCP2 repression can synergize with standard chemotherapy to inhibit pancreatic cancer cell growth provide the molecular rationale to consider UCP2 as a potential therapeutic target for pancreatic cancer. In this editorial, recent advances describing the relationship between cancer development and mitochondrial UCP2 activity are critically provided.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3748/wjg.v21.i11.3232DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4363752PMC
March 2015

Pancreatic ductal adenocarcinoma cell lines display a plastic ability to bi‑directionally convert into cancer stem cells.

Int J Oncol 2015 Mar 12;46(3):1099-108. Epub 2014 Dec 12.

Department of Life and Reproduction Sciences, Section of Biochemistry, University of Verona, Verona, Italy.

Pancreatic ductal adenocarcinoma (PDAC) is often diagnosed when metastatic events have occurred. Cancer stem cells (CSCs) play an important role in tumor initiation, metastasis, chemoresistance and relapse. A growing number of studies have suggested that CSCs exist in a dynamic equilibrium with more differentiated cancer cells via a bi‑directional regeneration that is dependent on the environmental stimuli. In this investigation, we obtain, by using a selective medium, PDAC CSCs from five out of nine PDAC cell lines, endowed with different tumorsphere‑forming ability. PDAC CSCs were generally more resistant to the action of five anticancer drugs than parental cell lines and were characterized by an increased expression of EpCAM and CD44v6, typical stem cell surface markers, and a decreased expression of E‑cadherin, the main marker of the epithelial state. PDAC CSCs were able to re‑differentiate into parental cells once cultured in parental growth condition, as demonstrated by re‑acquisition of the epithelial morphology, the decreased expression levels of EpCAM and CD44v6 and the increased sensitivity to anticancer drugs. Finally, PDAC CSCs injected into nude mice developed a larger subcutaneous tumor mass and showed a higher metastatic activity compared to parental cells. The present study demonstrates the ability to obtain CSCs from several PDAC cell lines and that these cells are differentially resistant to various anticancer agents. This variability renders them a model of great importance to deeply understand pancreatic adenocarcinoma biology, to discover new biomarkers and to screen new therapeutic compounds.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3892/ijo.2014.2796DOI Listing
March 2015

Regulation of miR-23b expression and its dual role on ROS production and tumour development.

Cancer Lett 2014 Jul 19;349(2):107-13. Epub 2014 Apr 19.

Department of Life and Reproduction Sciences, Biochemistry Section, University of Verona, Verona, Italy. Electronic address:

Among the wide family of microRNAs, microRNA 23b (miR-23b) intriguingly assumes opposite roles on regulation of reactive oxygen species (ROS) and on the development of human cancers. In this review we describe novel findings concerning the molecular events involved in miR-23b gene activation or repression and in both ROS regulation and tumour development. In particular, we define the molecular targets of miR-23b that determine its function as either a tumour suppressor or oncomir in different cell types. Finally, we analyze the involvement of miR-23b in cancer cell metabolism, including autophagy, and in biomarker signatures of microRNAs allowing a prognostic and therapeutic evaluation in various human cancers.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.canlet.2014.04.012DOI Listing
July 2014

UCP2, a mitochondrial protein regulated at multiple levels.

Cell Mol Life Sci 2014 Apr 27;71(7):1171-90. Epub 2013 Jun 27.

Section of Biochemistry, Deparment of Life and Reproduction Sciences, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy,

An ever-increasing number of studies highlight the role of uncoupling protein 2 (UCP2) in a broad range of physiological and pathological processes. The knowledge of the molecular mechanisms of UCP2 regulation is becoming fundamental in both the comprehension of UCP2-related physiological events and the identification of novel therapeutic strategies based on UCP2 modulation. The study of UCP2 regulation is a fast-moving field. Recently, several research groups have made a great effort to thoroughly understand the various molecular mechanisms at the basis of UCP2 regulation. In this review, we describe novel findings concerning events that can occur in a concerted manner at various levels: Ucp2 gene mutation (single nucleotide polymorphisms), UCP2 mRNA and protein expression (transcriptional, translational, and protein turn-over regulation), UCP2 proton conductance (ligands and post-transcriptional modifications), and nutritional and pharmacological regulation of UCP2.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00018-013-1407-0DOI Listing
April 2014

Hyaluronic acid-coated liposomes for active targeting of gemcitabine.

Eur J Pharm Biopharm 2013 Nov 18;85(3 Pt A):373-80. Epub 2013 Jun 18.

Dipartimento di Scienza e Tecnologia del Farmaco, University of Torino, Italy. Electronic address:

The aim of this work was the preparation, characterization, and preliminary evaluation of the targeting ability toward pancreatic adenocarcinoma cells of liposomes containing the gemcitabine lipophilic prodrug [4-(N)-lauroyl-gemcitabine, C12GEM]. Hyaluronic acid (HA) was selected as targeting agent since it is biodegradable, biocompatible, and can be chemically modified and its cell surface receptor CD44 is overexpressed on various tumors. For this purpose, conjugates between a phospholipid, the 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), and HA of two different low molecular weights 4800 Da (12 disaccharidic units) and 12,000 Da (32 disaccharidic units), were prepared, characterized, and introduced in the liposomes during the preparation. Different liposomal formulations were prepared and their characteristics were analyzed: size, Z potential, and TEM analyses underline a difference in the HA-liposomes from the non-HA ones. In order to better understand the HA-liposome cellular localization and to evaluate their interaction with CD44 receptor, confocal microscopy studies were performed. The results demonstrate that HA facilitates the recognition of liposomes by MiaPaCa2 cells (CD44(+)) and that the uptake increases with increase in the polymer molecular weight. Finally, the cytotoxicity of the different preparations was evaluated and data show that incorporation of C12GEM increases their cytotoxic activity and that HA-liposomes inhibit cell growth more than plain liposomes. Altogether, the results demonstrate the specificity of C12GEM targeting toward CD44-overexpressing pancreatic adenocarcinoma cell line using HA as a ligand.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejpb.2013.06.003DOI Listing
November 2013

Comparative proteomic and phosphoproteomic profiling of pancreatic adenocarcinoma cells treated with CB1 or CB2 agonists.

Electrophoresis 2013 May 11;34(9-10):1359-68. Epub 2013 Apr 11.

Proteomics and Mass Spectrometry Laboratory, Department of Biotechnology, University of Verona, Verona, Italy.

The pancreatic adenocarcinoma cell line Panc1 was treated with cannabinoid receptor ligands (arachidonylcyclopropylamide or GW405833) in order to elucidate the molecular mechanism of their anticancer effect. A proteomic approach was used to analyze the protein and phosphoprotein profiles. Western blot and functional data mining were also employed in order to validate results, classify proteins, and explore their potential relationships. We demonstrated that the two cannabinoids act through a widely common mechanism involving up- and down-regulation of proteins related to energetic metabolism and cell growth regulation. Overall, the results reported might contribute to the development of a therapy based on cannabinoids for pancreatic adenocarcinoma.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/elps.201200402DOI Listing
May 2013

Targeting gemcitabine containing liposomes to CD44 expressing pancreatic adenocarcinoma cells causes an increase in the antitumoral activity.

Biochim Biophys Acta 2013 May 4;1828(5):1396-404. Epub 2013 Feb 4.

Department of Life and Reproduction Sciences, University of Verona, Verona, Italy.

Pancreatic adenocarcinoma is often diagnosed when metastatic events have occurred. The early spread of circulating cancer cells expressing the CD44 receptor may play a crucial role in this process. In this study, we have investigated the cellular delivery ability and both in vitro and in vivo anti-tumoral activity of liposomes conjugated with two different low molecular weight hyaluronic acids (HA 4.8kDa and HA 12kDa), the primary ligand of CD44, and containing a lipophilic gemcitabine (GEM) pro-drug. By confocal microscopy and flow cytometry analyses, we demonstrate that the cellular uptake into a highly CD44-expressing pancreatic adenocarcinoma cell line is higher with HA-conjugated (12kDa>4.8kDa) than non-conjugated liposomes. Consistently, in vitro cytotoxic assays display an increased sensitivity towards GEM containing HA-liposomes, compared to non-conjugated liposomes. Conversely, CD44 non-expressing normal cells show a similar uptake and in vitro cytotoxicity with both HA-conjugated and non-conjugated liposomes. Furthermore, we demonstrate that the HA-liposomes are taken up into the cells via lipid raft-mediated endocytosis. All the liposome formulations containing GEM show a higher antitumoral activity than free GEM in a mouse xenograft tumor model of human pancreatic adenocarcinoma. The 12kDa HA-liposomes have the strongest efficiency, while non-conjugated liposomes and the 4.8kDa HA-liposomes are similarly active. Taken together, our results provide a strong rationale for further development of HA-conjugated liposomes to treat pancreatic adenocarcinoma.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamem.2013.01.020DOI Listing
May 2013