Publications by authors named "Iain Lc Chapple"

3 Publications

  • Page 1 of 1

Is periodontitis a comorbidity of COPD or can associations be explained by shared risk factors/behaviors?

Int J Chron Obstruct Pulmon Dis 2017 4;12:1339-1349. Epub 2017 May 4.

University Hospital Birmingham NHS Foundation Trust, Edgbaston, Birmingham, UK.

COPD is recognized as having a series of comorbidities potentially related to common inflammatory processes. Periodontitis is one of the most common human inflammatory diseases and has previously been associated with COPD in numerous observational studies. As periodontitis and COPD are both chronic, progressive conditions characterized by neutrophilic inflammation with subsequent proteolytic destruction of connective tissue, it has been proposed that they share common pathophysiological processes. The mechanisms proposed to link COPD and periodontitis include mechanical aspiration of oral contents into the respiratory tree, overspill of locally produced inflammatory mediators into the systemic circulation or oral or lung-derived bacteremia activating an acute-phase response and also reactive oxygen species (ROS) and cytokine release by systemic neutrophils at distant sites. Studies of systemic neutrophils in COPD and chronic periodontitis describe altered cellular functions that would predispose to inflammation and tissue destruction both in the lung and in the mouth, again potentially connecting these conditions. However, COPD and periodontitis also share risk factors such as age, chronic tobacco smoke exposure, and social deprivation that are not always considered in observational and interventional studies. Furthermore, studies reporting associations have often utilized differing definitions of both COPD and periodontitis. This article reviews the current available evidence supporting the hypothesis that COPD and inflammatory periodontal disease (periodontitis) could be pathologically associated, including a review of shared inflammatory mechanisms. It highlights the potential limitations of previous studies, in particular, the lack of uniformly applied case definitions for both COPD and periodontitis and poor recognition of shared risk factors. Understanding associations between these conditions may inform why patients with COPD suffer such a burden of comorbid illness and new therapeutic strategies for both the diseases. However, further research is needed to clarify factors that may be directly causal as opposed to confounding relationships.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2147/COPD.S127802DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5422335PMC
March 2018

Ascorbate and α-tocopherol differentially modulate reactive oxygen species generation by neutrophils in response to FcγR and TLR agonists.

Innate Immun 2013 21;19(2):152-9. Epub 2012 Aug 21.

School of Dentistry and MRC Centre for Immune Regulation, University of Birmingham, St Chads Queensway, Birmingham, UK.

Periodontitis, a ubiquitous chronic inflammatory disease, is associated with reduced antioxidant defences and neutrophil hyperactivity in terms of reactive oxygen species (ROS) generation. Its phenotype is thus characterized by oxidative stress. We have determined the effect of antioxidant micronutrients ascorbate and α-tocopherol on neutrophil ROS generation. Peripheral neutrophils from periodontally-healthy individuals (n = 20) were challenged with phorbol myristate acetate, IgG-opsonised Staphylococcus aureus, Fusobacterium nucleatum or PBS in the presence and absence of micronutrients (50 µM). Total and extracellular ROS were measured by luminol and isoluminol chemiluminescence respectively. Total and extracellular unstimulated, baseline ROS generation was unaffected by α-tocopherol, but inhibited by ascorbate and a combination of both micronutrients. Fcγ-receptor (Fcγ-R)-stimulated total or extracellular ROS generation was not affected by the presence of individual micronutrients. However, the combination significantly reduced extracellular FcγR-stimulated ROS release. Neither micronutrient inhibited TLR-stimulated total ROS, but the combination caused inhibition. Ascorbate and the micronutrient combination, but not α-tocopherol, inhibited extracellular ROS release by TLR-stimulated cells. Such micronutrient effects in vivo could be beneficial in reducing collateral tissue damage in chronic inflammatory diseases, such as periodontitis, while retaining immune-mediated neutrophil function.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1177/1753425912455207DOI Listing
September 2013

Micronutrient modulation of NF-κB in oral keratinocytes exposed to periodontal bacteria.

Innate Immun 2013 13;19(2):140-51. Epub 2012 Aug 13.

School of Dentistry, College of Medical & Dental Sciences, University of Birmingham, UK.

Chronic periodontal diseases are characterised by a dysregulated and exaggerated inflammatory/immune response to plaque bacteria. We have demonstrated previously that oral keratinocytes up-regulate key molecular markers of inflammation, including NF-κB and cytokine signalling, when exposed to the periodontal bacteria Porphyromonas gingivalis and Fusobacterium nucleatum in vitro. The purpose of the current study was to investigate whether α-lipoic acid was able to abrogate bacterially-induced pro-inflammatory changes in the H400 oral epithelial cell line. Initial studies indicated that α-lipoic acid supplementation (1-4 mM) significantly reduced cell attachment; lower concentrations (<0.5 mM) enabled >85% cell adhesion at 24 h. While a pro-inflammatory response, demonstrable by NF-κB translocation, gene expression and protein production was evident in H400 cells following exposure to P. gingivalis and F. nucleatum, pre-incubation of cells with 0.5 mM α-lipoic acid modulated this response. α-Lipoic acid pre-treatment significantly decreased levels of bacterially-induced NF-κB activation and IL-8 protein production, and differentially modulated transcript levels for IL-8, IL-1β, TNF-α and GM-CSF, TLR2, 4, 9, S100A8, S100A9, lysyl oxidase, NF-κB1, HMOX, and SOD2. Overall, the data indicate that α-lipoic acid exerts an anti-inflammatory effect on oral epithelial cells exposed to periodontal bacteria and thus may provide a novel adjunctive treatment for periodontal diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1177/1753425912454761DOI Listing
September 2013