Publications by authors named "Huishou Zhao"

12 Publications

  • Page 1 of 1

FNDC5/Irisin attenuates diabetic cardiomyopathy in a type 2 diabetes mouse model by activation of integrin αV/β5-AKT signaling and reduction of oxidative/nitrosative stress.

J Mol Cell Cardiol 2021 Jul 3;160:27-41. Epub 2021 Jul 3.

Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China. Electronic address:

Irisin, the cleaved form of the fibronectin type III domain containing 5 (FNDC5) protein, is involved in metabolism and inflammation. Recent findings indicated that irisin participated in cardiovascular physiology and pathology. In this study, we investigated the effects of FNDC5/irisin on diabetic cardiomyopathy (DCM) in type 2 diabetic db/db mice. Downregulation of myocardial FNDC5/irisin protein expression and plasma irisin levels was observed in db/db mice compared to db/+ controls. Moreover, echocardiography revealed that db/db mice exhibited normal cardiac systolic function and impaired diastolic function. Adverse structural remodeling, including cardiomyocyte apoptosis, myocardial fibrosis, and cardiac hypertrophy were observed in the hearts of db/db mice. Sixteen-week-old db/db mice were intramyocardially injected with adenovirus encoding FNDC5 or treated with recombinant human irisin via a peritoneal implant osmotic pump for 4 weeks. Both overexpression of myocardial FNDC5 and exogenous irisin administration attenuated diastolic dysfunction and cardiac structural remodeling in db/db mice. Results from in vitro studies revealed that FNDC5/irisin protein expression was decreased in high glucose (HG)/high fat (HF)-treated cardiomyocytes. Increased levels of inducible nitric oxide synthase (iNOS), NADPH oxidase 2 (NOX2), 3-nitrotyrosine (3-NT), reactive oxygen species (ROS), and peroxynitrite (ONOO) in HG/HF-treated H9C2 cells provided evidence of oxidative/nitrosative stress, which was alleviated by treatment with FNDC5/irisin. Moreover, the mitochondria membrane potential (ΔΨm) was decreased and cytochrome C was released from mitochondria with increased levels of cleaved caspase-3 in HG/HF-treated H9C2 cells, indicating the presence of mitochondria-dependent apoptosis, which was partially reversed by FNDC5/irisin treatment. Mechanistic studies showed that activation of integrin αVβ5-AKT signaling and attenuation of oxidative/nitrosative stress were responsible for the cardioprotective effects of FNDC5/irisin. Therefore, FNDC5/irisin mediates cardioprotection in DCM by inhibiting myocardial apoptosis, myocardial fibrosis, and cardiac hypertrophy. These findings implicate that FNDC5/irisin as a potential therapeutic intervention for DCM, especially in type 2 diabetes mellitus (T2DM).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yjmcc.2021.06.013DOI Listing
July 2021

Branched chain amino acids exacerbate myocardial ischemia/reperfusion vulnerability via enhancing GCN2/ATF6/PPAR-α pathway-dependent fatty acid oxidation.

Theranostics 2020 27;10(12):5623-5640. Epub 2020 Apr 27.

Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, China.

: Myocardial vulnerability to ischemia/reperfusion (I/R) injury is strictly regulated by energy substrate metabolism. Branched chain amino acids (BCAA), consisting of valine, leucine and isoleucine, are a group of essential amino acids that are highly oxidized in the heart. Elevated levels of BCAA have been implicated in the development of cardiovascular diseases; however, the role of BCAA in I/R process is not fully understood. The present study aims to determine how BCAA influence myocardial energy substrate metabolism and to further clarify the pathophysiological significance during cardiac I/R injury. : Parameters of glucose and fatty acid metabolism were measured by seahorse metabolic flux analyzer in adult mouse cardiac myocytes with or without BCAA incubation Chronic accumulation of BCAA was induced in mice receiving oral BCAA administration. A genetic mouse model with defective BCAA catabolism was also utilized. Mice were subjected to MI/R and the injury was assessed extensively at the whole-heart, cardiomyocyte, and molecular levels. : We confirmed that chronic accumulation of BCAA enhanced glycolysis and fatty acid oxidation (FAO) but suppressed glucose oxidation in adult mouse ventricular cardiomyocytes. Oral gavage of BCAA enhanced FAO in cardiac tissues, exacerbated lipid peroxidation toxicity and worsened myocardial vulnerability to I/R injury. Etomoxir, a specific inhibitor of FAO, rescued the deleterious effects of BCAA on I/R injury. Mechanistically, valine, leucine and their corresponding branched chain α-keto acid (BCKA) derivatives, but not isoleucine and its BCKA derivative, transcriptionally upregulated peroxisome proliferation-activated receptor alpha (PPAR-α). BCAA/BCKA induced PPAR-α upregulation through the general control nonderepresible-2 (GCN2)/ activating transcription factor-6 (ATF6) pathway. Finally, in a genetic mouse model with BCAA catabolic defects, chronic accumulation of BCAA increased FAO in myocardial tissues and sensitized the heart to I/R injury, which could be reversed by adenovirus-mediated PPAR-α silencing. : We identify BCAA as an important nutrition regulator of myocardial fatty acid metabolism through transcriptional upregulation of PPAR-α. Chronic accumulation of BCAA, caused by either dietary or genetic factors, renders the heart vulnerable to I/R injury via exacerbating lipid peroxidation toxicity. These data support the notion that BCAA lowering methods might be potentially effective cardioprotective strategies, especially among patients with diseases characterized by elevated levels of BCAA, such as obesity and diabetes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.7150/thno.44836DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7196282PMC
May 2021

Branched-Chain Amino Acids Exacerbate Obesity-Related Hepatic Glucose and Lipid Metabolic Disorders via Attenuating Akt2 Signaling.

Diabetes 2020 06 17;69(6):1164-1177. Epub 2020 Mar 17.

Department of Cardiology, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China

Branched chain amino acids (BCAAs) are associated with the progression of obesity-related metabolic disorders, including type 2 diabetes and nonalcoholic fatty liver disease. However, whether BCAAs disrupt the homeostasis of hepatic glucose and lipid metabolism remains unknown. In this study, we observed that BCAAs supplementation significantly reduced high-fat (HF) diet-induced hepatic lipid accumulation while increasing the plasma lipid levels and promoting muscular and renal lipid accumulation. Further studies demonstrated that BCAAs supplementation significantly increased hepatic gluconeogenesis and suppressed hepatic lipogenesis in HF diet-induced obese (DIO) mice. These phenotypes resulted from severe attenuation of Akt2 signaling via mTORC1- and mTORC2-dependent pathways. BCAAs/branched-chain α-keto acids (BCKAs) chronically suppressed Akt2 activation through mTORC1 and mTORC2 signaling and promoted Akt2 ubiquitin-proteasome-dependent degradation through the mTORC2 pathway. Moreover, the E3 ligase Mul1 played an essential role in BCAAs/BCKAs-mTORC2-induced Akt2 ubiquitin-dependent degradation. We also demonstrated that BCAAs inhibited hepatic lipogenesis by blocking Akt2/SREBP1/INSIG2a signaling and increased hepatic glycogenesis by regulating Akt2/Foxo1 signaling. Collectively, these data demonstrate that in DIO mice, BCAAs supplementation resulted in serious hepatic metabolic disorder and severe liver insulin resistance: insulin failed to not only suppress gluconeogenesis but also activate lipogenesis. Intervening BCAA metabolism is a potential therapeutic target for severe insulin-resistant disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2337/db19-0920DOI Listing
June 2020

Swimming exercise inhibits myocardial ER stress in the hearts of aged mice by enhancing cGMP‑PKG signaling.

Mol Med Rep 2020 02 5;21(2):549-556. Epub 2019 Dec 5.

Department of Physiology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China.

The purpose of the present study was to explore aging‑associated cardiac dysfunction and the possible mechanism by which swimming exercise modulates cardiac dysfunction in aged mice. Aged mice were divided into two groups: i) Aged mice; and ii) aged mice subjected to swimming exercises. Another cohort of 4‑month‑old male mice served as the control group. Cardiac structure and function in mice were analyzed using hematoxylin and eosin staining, and echocardiography. The levels of oxidative stress were determined by measuring the levels of superoxide dismutase, malondialdehyde and reactive oxygen species (ROS). Levels of the endoplasmic reticulum (ER) stress‑related protein PKR‑like ER kinase, glucose‑regulated protein 78 and C/EBP homologous protein were determined to evaluate the level of ER stress. The aged group exhibited an abnormal cardiac structure and decreased cardiac function, both of which were ameliorated by swimming exercise. The hearts of the aged mice exhibited pronounced oxidative and ER stress, which were ameliorated by exercise, and was accompanied by the reactivation of myocardial cGMP and suppression of cGMP‑specific phosphodiesterase type 5 (PDE5). The inhibition of PDE5 attenuated age‑induced cardiac dysfunction, blocked ROS production and suppressed ER stress. An ER stress inducer abolished the beneficial effects of the swimming exercise on cardiac function and increased ROS production. The present study suggested that exercise restored cardiac function in mice with age‑induced cardiac dysfunction by inhibiting oxidative stress and ER stress, and increasing cGMP‑protein kinase G signaling.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3892/mmr.2019.10864DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6947875PMC
February 2020

Targeting mitochondrial dynamics by regulating Mfn2 for therapeutic intervention in diabetic cardiomyopathy.

Theranostics 2019 31;9(13):3687-3706. Epub 2019 May 31.

Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.

Increasing evidence has implicated the important role of mitochondrial pathology in diabetic cardiomyopathy (DCM), while the underlying mechanism remains largely unclear. The aim of this study was to investigate the role of mitochondrial dynamics in the pathogenesis of DCM and its underlying mechanisms. : Obese diabetic (db/db) and lean control (db/+) mice were used in this study. Mitochondrial dynamics were analyzed by transmission electron microscopy and by confocal microscopy . : Diabetic hearts from 12-week-old db/db mice showed excessive mitochondrial fission and significant reduced expression of Mfn2, while there was no significant alteration or slight change in the expression of other dynamic-related proteins. Reconstitution of Mfn2 in diabetic hearts inhibited mitochondrial fission and prevented the progression of DCM. In an in-vitro study, cardiomyocytes cultured in high-glucose and high-fat (HG/HF) medium showed excessive mitochondrial fission and decreased Mfn2 expression. Reconstitution of Mfn2 restored mitochondrial membrane potential, suppressed mitochondrial oxidative stress and improved mitochondrial function in HG/HF-treated cardiomyocytes through promoting mitochondrial fusion. In addition, the down-regulation of Mfn2 expression in HG/HF-treated cardiomyocytes was induced by reduced expression of PPARα, which positively regulated the expression of Mfn2 by directly binding to its promoter. : Our study provides the first evidence that imbalanced mitochondrial dynamics induced by down-regulated Mfn2 contributes to the development of DCM. Targeting mitochondrial dynamics by regulating Mfn2 might be a potential therapeutic strategy for DCM.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.7150/thno.33684DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6587356PMC
September 2020

Thioredoxin-1 promotes macrophage reverse cholesterol transport and protects liver from steatosis.

Biochem Biophys Res Commun 2019 09 4;516(4):1103-1109. Epub 2019 Jul 4.

Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, China. Electronic address:

Atherosclerosis is characterized by the accumulation of excess cholesterol in plaques. Reverse cholesterol transport (RCT) plays a key role in the removal of cholesterol. In the present study, we examined the effect of thioredoxin-1 (Trx-1) on RCT and explored the underlying mechanism. We found that Trx-1 promoted RCT in vivo, as did T0901317, a known liver X receptor (LXR) ligand. T0901317 also inhibited the development of atherosclerotic plaques but promoted liver steatosis. Furthermore, Trx-1 promoted macrophage cholesterol efflux to apoAI in vitro. Mechanistically, Trx-1 promoted nuclear translocation of LXRα and induced the expression of ATP-binding cassette transporter A1 (ABCA1). Apolipoprotein E knockout (apoE-/-) mice fed an atherogenic diet were daily injected intraperitoneally with saline or Trx-1 (0.33 mg/kg). Trx-1 treatment significantly inhibited the development of atherosclerosis and induced the expression of ABCA1 in macrophages retrieved from apoE-/- mice. Moreover, the liver steatosis was attenuated by Trx-1. Overall, we demonstrated that Trx-1 promotes RCT by upregulating ABCA1 expression through induction of nuclear translocation of LXRα, and protects liver from steatosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2019.06.109DOI Listing
September 2019

Glycoprotein M6B Interacts with TβRI to Activate TGF-β-Smad2/3 Signaling and Promote Smooth Muscle Cell Differentiation.

Stem Cells 2019 02 27;37(2):190-201. Epub 2018 Nov 27.

Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China.

Smooth muscle cells (SMCs), which form the walls of blood vessels, play an important role in vascular development and the pathogenic process of vascular remodeling. However, the molecular mechanisms governing SMC differentiation remain poorly understood. Glycoprotein M6B (GPM6B) is a four-transmembrane protein that belongs to the proteolipid protein family and is widely expressed in neurons, oligodendrocytes, and astrocytes. Previous studies have revealed that GPM6B plays a role in neuronal differentiation, myelination, and osteoblast differentiation. In the present study, we found that the GPM6B gene and protein expression levels were significantly upregulated during transforming growth factor-β1 (TGF-β1)-induced SMC differentiation. The knockdown of GPM6B resulted in the downregulation of SMC-specific marker expression and repressed the activation of Smad2/3 signaling. Moreover, GPM6B regulates SMC Differentiation by Controlling TGF-β-Smad2/3 Signaling. Furthermore, we demonstrated that similar to p-Smad2/3, GPM6B was profoundly expressed and coexpressed with SMC differentiation markers in embryonic SMCs. Moreover, GPM6B can regulate the tightness between TβRI, TβRII, or Smad2/3 by directly binding to TβRI to activate Smad2/3 signaling during SMC differentiation, and activation of TGF-β-Smad2/3 signaling also facilitate the expression of GPM6B. Taken together, these findings demonstrate that GPM6B plays a crucial role in SMC differentiation and regulates SMC differentiation through the activation of TGF-β-Smad2/3 signaling via direct interactions with TβRI. This finding indicates that GPM6B is a potential target for deriving SMCs from stem cells in cardiovascular regenerative medicine. Stem Cells 2018 Stem Cells 2019;37:190-201.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/stem.2938DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7379588PMC
February 2019

Genetic association and functional analysis of rs7903456 in FAM35A gene and hyperuricemia: a population based study.

Sci Rep 2018 06 25;8(1):9579. Epub 2018 Jun 25.

Department of Clinical Nutrition, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China.

Recent studies have identified SNP rs7903456 of FAM35A to be associated with gout. Because of the close connections between hyperuricemia and gout, we hypothesized that the effect of rs7903456 on gout might be mediated by hyperuricemia or its related quantitative trait, uric acid level. We investigated the association between 31 SNPs of FAM35A, including rs7903456, and hyperuricemia based on 2,773 hyperuricemia patients and controls. We fitted a simple model for each of these 31 SNPs to screen the candidate SNP for further analyses. Moreover, we selected potential confounders and fitted a multivariate model to investigate the adjusted effects of the targeted SNPs. Both disease status of hyperuricemia and blood uric acid level were considered as the main phenotype. We have identified rs7903456 to be associated with hyperuricemia and uric acid level. The significant signal was identified between rs7903456 and uric acid level after adjusted by several potential confounders. Our findings showed that the T allele of rs7903456 could increase the uric acid level by ~10 mmol/L on average after adjusting several biochemical and clinical variables. Our findings indicated that the previously identified effects of rs7903456 on gout might partly be mediated by its effect on uric acid levels.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-018-27956-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6018507PMC
June 2018

Adiponectin determines farnesoid X receptor agonism-mediated cardioprotection against post-infarction remodelling and dysfunction.

Cardiovasc Res 2018 08;114(10):1335-1349

Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China.

Aims: The farnesoid X receptor (FXR) is a member of the metabolic nuclear receptor superfamily that plays a critical regulatory role in cardiovascular physiology/pathology. However, the role of systemic FXR activation in the chronic phase in myocardial infarction (MI)-induced cardiac remodelling and dysfunction remains unclear. In this study, we aimed to elucidate the role of long-term FXR activation on post-MI cardiac remodelling and dysfunction.

Methods And Results: Mice underwent either MI surgery or sham operation. At 1 week after MI, both sham and MI mice were gavaged with 25 mg/kg/d of a synthetic FXR agonist (GW4064) or a vehicle control for 7 weeks, and cardiac performance was assessed by consecutive echocardiography studies. Administration of GW4064 significantly increased left ventricular ejection fraction at 4 weeks and 8 weeks after MI (both P < 0.01). Moreover, GW4064 treatment increased angiogenesis and mitochondrial biogenesis, reduced cardiomyocyte loss and inflammation, and ameliorated cardiac remodelling as evidenced by heart weight, lung weight, atrial natriuretic peptide/brain natriuretic peptide levels, and myocardial fibrosis at 8 weeks post-MI. At the molecular level, GW4064 significantly increased FXR mRNA expression and transcriptional activity in heart tissue. Moreover, over-expression of myocardial FXR failed to exert significant cardioprotection in vivo, indicating that GW4064 improved post-MI heart remodelling and function independent of myocardial FXR expression/activity. Among the four down-stream soluble molecules of FXR, plasma adiponectin was most significantly increased by GW4064. In cultured adipocytes, GW4064 increased mRNA levels and protein expression of adiponectin. Conditioned medium of GW4064-treated adipocytes activated AMPK-PGC-1α signalling and reduced hypoxia-induced cardiomyocyte apoptosis, all of which were attenuated by an adiponectin neutralizing anti-body. More importantly, when knocking-out adiponectin in mice, the cardioprotective effects of GW4064 were attenuated.

Conclusions: We are the first to show that FXR agonism ameliorated post-MI cardiac dysfunction and remodelling by stimulating adiponectin secretion. Thus, we demonstrated that FXR agonism is a potential therapeutic strategy in post-MI heart failure.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/cvr/cvy093DOI Listing
August 2018

Nicotine induces H9C2 cell apoptosis via Akt protein degradation.

Mol Med Rep 2017 Nov 22;16(5):6269-6275. Epub 2017 Aug 22.

Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China.

Smoking is highly associated with cardiovascular diseases. However, the effect of nicotine, a key ingredient in smoking products, on cardiomyocyte apoptosis remains controversial. The present study aims to clarify the role of nicotine on cardiomyocyte cell apoptosis and to investigate the underlying mechanism. In the present study, H9C2 cells were exposed to nicotine at various concentrations (0, 10 and 100 µM) for 48 h. Cell Counting Kit‑8 and TUNEL assays were performed to assess cell viability and apoptosis, respectively, and reverse transcription‑quantitative polymerase chain reaction and western blot analysis were used to investigate the mRNA and protein expression. PYR‑41, a ubiquitin E1 inhibitor, was employed to investigate whether the ubiquitin‑proteasome system was involved in the downregulation of Akt. An Akt1 overexpression plasmid was used to demonstrate the role of Akt in H9C2 cells apoptosis. Tetratricopeptide repeat domain 3 (TTC3) small interfering RNA (siRNA) was used to investigate the effect of TTC3 on Akt protein degradation. The results demonstrated that nicotine induced apoptosis in H9C2 cells compared with control cells (P<0.05). The protein level of Akt was downregulated by nicotine in a concentration‑dependent manner (P<0.05). PYR‑41 treatment restored the protein level of Akt. The cell viability was significantly improved by Akt overexpression when cells were exposed to nicotine at 10 µM, compared with control cells. Nicotine also upregulated the level of TTC3 mRNA (P<0.05) and the protein level of Akt, and cell viability was recovered by TTC3 siRNA. In conclusion, the current study demonstrated that nicotine induced H9C2 cell apoptosis via Akt protein degradation, which may be mediated by TTC3.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3892/mmr.2017.7331DOI Listing
November 2017

Branched Chain Amino Acids Cause Liver Injury in Obese/Diabetic Mice by Promoting Adipocyte Lipolysis and Inhibiting Hepatic Autophagy.

EBioMedicine 2016 Nov 11;13:157-167. Epub 2016 Oct 11.

Department of Cardiology, Xijing Hospital, Fourth Military Medical University, China. Electronic address:

The Western meat-rich diet is both high in protein and fat. Although the hazardous effect of a high fat diet (HFD) upon liver structure and function is well recognized, whether the co-presence of high protein intake contributes to, or protects against, HF-induced hepatic injury remains unclear. Increased intake of branched chain amino acids (BCAA, essential amino acids compromising 20% of total protein intake) reduces body weight. However, elevated circulating BCAA is associated with non-alcoholic fatty liver disease and injury. The mechanisms responsible for this quandary remain unknown; the role of BCAA in HF-induced liver injury is unclear. Utilizing HFD or HFD+BCAA models, we demonstrated BCAA supplementation attenuated HFD-induced weight gain, decreased fat mass, activated mammalian target of rapamycin (mTOR), inhibited hepatic lipogenic enzymes, and reduced hepatic triglyceride content. However, BCAA caused significant hepatic damage in HFD mice, evidenced by exacerbated hepatic oxidative stress, increased hepatic apoptosis, and elevated circulation hepatic enzymes. Compared to solely HFD-fed animals, plasma levels of free fatty acids (FFA) in the HFD+BCAA group are significantly further increased, due largely to AMPKα2-mediated adipocyte lipolysis. Lipolysis inhibition normalized plasma FFA levels, and improved insulin sensitivity. Surprisingly, blocking lipolysis failed to abolish BCAA-induced liver injury. Mechanistically, hepatic mTOR activation by BCAA inhibited lipid-induced hepatic autophagy, increased hepatic apoptosis, blocked hepatic FFA/triglyceride conversion, and increased hepatocyte susceptibility to FFA-mediated lipotoxicity. These data demonstrated that BCAA reduces HFD-induced body weight, at the expense of abnormal lipolysis and hyperlipidemia, causing hepatic lipotoxicity. Furthermore, BCAA directly exacerbate hepatic lipotoxicity by reducing lipogenesis and inhibiting autophagy in the hepatocyte.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ebiom.2016.10.013DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5264279PMC
November 2016

BCKA down-regulates mTORC2-Akt signal and enhances apoptosis susceptibility in cardiomyocytes.

Biochem Biophys Res Commun 2016 Nov 30;480(1):106-113. Epub 2016 Sep 30.

Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China. Electronic address:

Diabetic mellitus (DM) portends poor prognosis concerning pressure overloaded heart disease. Branched-chain amino acids (BCAAs), elements of essential amino acids, have been found altered in its catabolism in diabetes decades ago. However, the relationship between BCAAs and DM induced deterioration of pressure overloaded heart disease remains controversial. This study is aimed to investigate the particular effect of BCKA, a metabolite of BCAA, on myocardial injury induced by pressure overloaded. Primary cardiomyocytes were incubated with or without BCKA and followed by treatment with isoproterenol (ISO); then cell viability was detected by CCK8 and apoptosis was examined by TUNNEL stain and caspase-3 activity analysis. Compared to non-BCKA incubated group, BCKA incubation decreased cell survival and increased apoptosis concentration dependently. Furthermore, Western blot assay showed that mTORC2-Akt pathway was significantly inactivated by BCKA incubation. Moreover, overexpression of rictor, a vital component of mTORC2, significantly abolished the adverse effects of BCKA on apoptosis susceptibility of cardiomyocytes. These results indicate that BCKA contribute to vulnerability of cardiomyocytes in stimulated stress via inactivation of mTORC2-Akt pathway.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2016.09.162DOI Listing
November 2016
-->