Publications by authors named "Hugh C Watkins"

9 Publications

  • Page 1 of 1

Toward Replacing Late Gadolinium Enhancement With Artificial Intelligence Virtual Native Enhancement for Gadolinium-Free Cardiovascular Magnetic Resonance Tissue Characterization in Hypertrophic Cardiomyopathy.

Circulation 2021 Aug 7;144(8):589-599. Epub 2021 Jul 7.

Oxford Centre for Clinical Magnetic Resonance Research, Oxford Biomedical Research Centre National Institute for Health Research, Division of Cardiovascular (Q.Z., M.J.B., E.L., M.Shanmuganathan, I.A.P., C.N., R.M., K.W., E.H., A.B., S.D.P., H.C.W., S.N., V.M.F., S.K.P.).

Background: Late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) imaging is the gold standard for noninvasive myocardial tissue characterization but requires intravenous contrast agent administration. It is highly desired to develop a contrast agent-free technology to replace LGE for faster and cheaper CMR scans.

Methods: A CMR virtual native enhancement (VNE) imaging technology was developed using artificial intelligence. The deep learning model for generating VNE uses multiple streams of convolutional neural networks to exploit and enhance the existing signals in native T1 maps (pixel-wise maps of tissue T1 relaxation times) and cine imaging of cardiac structure and function, presenting them as LGE-equivalent images. The VNE generator was trained using generative adversarial networks. This technology was first developed on CMR datasets from the multicenter Hypertrophic Cardiomyopathy Registry, using hypertrophic cardiomyopathy as an exemplar. The datasets were randomized into 2 independent groups for deep learning training and testing. The test data of VNE and LGE were scored and contoured by experienced human operators to assess image quality, visuospatial agreement, and myocardial lesion burden quantification. Image quality was compared using a nonparametric Wilcoxon test. Intra- and interobserver agreement was analyzed using intraclass correlation coefficients (ICC). Lesion quantification by VNE and LGE were compared using linear regression and ICC.

Results: A total of 1348 hypertrophic cardiomyopathy patients provided 4093 triplets of matched T1 maps, cines, and LGE datasets. After randomization and data quality control, 2695 datasets were used for VNE method development and 345 were used for independent testing. VNE had significantly better image quality than LGE, as assessed by 4 operators (n=345 datasets; <0.001 [Wilcoxon test]). VNE revealed lesions characteristic of hypertrophic cardiomyopathy in high visuospatial agreement with LGE. In 121 patients (n=326 datasets), VNE correlated with LGE in detecting and quantifying both hyperintensity myocardial lesions (=0.77-0.79; ICC=0.77-0.87; <0.001) and intermediate-intensity lesions (=0.70-0.76; ICC=0.82-0.85; <0.001). The native CMR images (cine plus T1 map) required for VNE can be acquired within 15 minutes and producing a VNE image takes less than 1 second.

Conclusions: VNE is a new CMR technology that resembles conventional LGE but without the need for contrast administration. VNE achieved high agreement with LGE in the distribution and quantification of lesions, with significantly better image quality.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
August 2021

CalTrack: High-Throughput Automated Calcium Transient Analysis in Cardiomyocytes.

Circ Res 2021 Jul 21;129(2):326-341. Epub 2021 May 21.

Division of Cardiovascular Medicine, Radcliffe Department of Medicine (Y.P., F.M., A.J.S., M.S., V.S., C.S.R., H.C.W., P.R., C.N.T.), University of Oxford, United Kingdom.

[Figure: see text].
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
July 2021

Myosin Sequestration Regulates Sarcomere Function, Cardiomyocyte Energetics, and Metabolism, Informing the Pathogenesis of Hypertrophic Cardiomyopathy.

Circulation 2020 03 27;141(10):828-842. Epub 2020 Jan 27.

Department of Genetics, Harvard Medical School, Boston, MA (C.N.T., A.C.G., G.V., H.W., G.R., A.S., R.A., A.C.P., J.G.S., C.E.S.).

Background: Hypertrophic cardiomyopathy (HCM) is caused by pathogenic variants in sarcomere protein genes that evoke hypercontractility, poor relaxation, and increased energy consumption by the heart and increased patient risks for arrhythmias and heart failure. Recent studies show that pathogenic missense variants in myosin, the molecular motor of the sarcomere, are clustered in residues that participate in dynamic conformational states of sarcomere proteins. We hypothesized that these conformations are essential to adapt contractile output for energy conservation and that pathophysiology of HCM results from destabilization of these conformations.

Methods: We assayed myosin ATP binding to define the proportion of myosins in the super relaxed state (SRX) conformation or the disordered relaxed state (DRX) conformation in healthy rodent and human hearts, at baseline and in response to reduced hemodynamic demands of hibernation or pathogenic HCM variants. To determine the relationships between myosin conformations, sarcomere function, and cell biology, we assessed contractility, relaxation, and cardiomyocyte morphology and metabolism, with and without an allosteric modulator of myosin ATPase activity. We then tested whether the positions of myosin variants of unknown clinical significance that were identified in patients with HCM, predicted functional consequences and associations with heart failure and arrhythmias.

Results: Myosins undergo physiological shifts between the SRX conformation that maximizes energy conservation and the DRX conformation that enables cross-bridge formation with greater ATP consumption. Systemic hemodynamic requirements, pharmacological modulators of myosin, and pathogenic myosin missense mutations influenced the proportions of these conformations. Hibernation increased the proportion of myosins in the SRX conformation, whereas pathogenic variants destabilized these and increased the proportion of myosins in the DRX conformation, which enhanced cardiomyocyte contractility, but impaired relaxation and evoked hypertrophic remodeling with increased energetic stress. Using structural locations to stratify variants of unknown clinical significance, we showed that the variants that destabilized myosin conformations were associated with higher rates of heart failure and arrhythmias in patients with HCM.

Conclusions: Myosin conformations establish work-energy equipoise that is essential for life-long cellular homeostasis and heart function. Destabilization of myosin energy-conserving states promotes contractile abnormalities, morphological and metabolic remodeling, and adverse clinical outcomes in patients with HCM. Therapeutic restabilization corrects cellular contractile and metabolic phenotypes and may limit these adverse clinical outcomes in patients with HCM.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
March 2020

Hypertrophic cardiomyopathy mutations in dysregulate myosin.

Sci Transl Med 2019 01;11(476)

Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.

The mechanisms by which truncating mutations in (encoding cardiac myosin-binding protein C; cMyBPC) or myosin missense mutations cause hypercontractility and poor relaxation in hypertrophic cardiomyopathy (HCM) are incompletely understood. Using genetic and biochemical approaches, we explored how depletion of cMyBPC altered sarcomere function. We demonstrated that stepwise loss of cMyBPC resulted in reciprocal augmentation of myosin contractility. Direct attenuation of myosin function, via a damaging missense variant (F764L) that causes dilated cardiomyopathy (DCM), normalized the increased contractility from cMyBPC depletion. Depletion of cMyBPC also altered dynamic myosin conformations during relaxation, enhancing the myosin state that enables ATP hydrolysis and thin filament interactions while reducing the super relaxed conformation associated with energy conservation. MYK-461, a pharmacologic inhibitor of myosin ATPase, rescued relaxation deficits and restored normal contractility in mouse and human cardiomyocytes with mutations. These data define dosage-dependent effects of cMyBPC on myosin that occur across the cardiac cycle as the pathophysiologic mechanisms by which truncations cause HCM. Therapeutic strategies to attenuate cMyBPC activity may rescue depressed cardiac contractility in patients with DCM, whereas inhibiting myosin by MYK-461 should benefit the substantial proportion of patients with HCM with mutations.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
January 2019

Analysis of 51 proposed hypertrophic cardiomyopathy genes from genome sequencing data in sarcomere negative cases has negligible diagnostic yield.

Genet Med 2019 07 11;21(7):1576-1584. Epub 2018 Dec 11.

Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.

Purpose: Increasing numbers of genes are being implicated in Mendelian disorders and incorporated into clinical test panels. However, lack of evidence supporting the gene-disease relationship can hinder interpretation. We explored the utility of testing 51 additional genes for hypertrophic cardiomyopathy (HCM), one of the most commonly tested Mendelian disorders.

Methods: Using genome sequencing data from 240 sarcomere gene negative HCM cases and 6229 controls, we undertook case-control and individual variant analyses to assess 51 genes that have been proposed for HCM testing.

Results: We found no evidence to suggest that rare variants in these genes are prevalent causes of HCM. One variant, in a single case, was categorized as likely to be pathogenic. Over 99% of variants were classified as a variant of uncertain significance (VUS) and 54% of cases had one or more VUS.

Conclusion: For almost all genes, the gene-disease relationship could not be validated and lack of evidence precluded variant interpretation. Thus, the incremental diagnostic yield of extending testing was negligible, and would, we propose, be outweighed by problems that arise with a high rate of uninterpretable findings. These findings highlight the need for rigorous, evidence-based selection of genes for clinical test panels.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
July 2019

Analysis of protein-coding genetic variation in 60,706 humans.

Nature 2016 08;536(7616):285-91

Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.

Large-scale reference data sets of human genetic variation are critical for the medical and functional interpretation of DNA sequence changes. Here we describe the aggregation and analysis of high-quality exome (protein-coding region) DNA sequence data for 60,706 individuals of diverse ancestries generated as part of the Exome Aggregation Consortium (ExAC). This catalogue of human genetic diversity contains an average of one variant every eight bases of the exome, and provides direct evidence for the presence of widespread mutational recurrence. We have used this catalogue to calculate objective metrics of pathogenicity for sequence variants, and to identify genes subject to strong selection against various classes of mutation; identifying 3,230 genes with near-complete depletion of predicted protein-truncating variants, with 72% of these genes having no currently established human disease phenotype. Finally, we demonstrate that these data can be used for the efficient filtering of candidate disease-causing variants, and for the discovery of human 'knockout' variants in protein-coding genes.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
August 2016

Common variation in the CD36 (fatty acid translocase) gene is associated with left-ventricular mass.

J Hypertens 2011 Apr;29(4):690-5

Institute of Human Genetics, Newcastle University, UK.

Aims: Genetic variation in the fatty acid translocase (CD36) gene has been shown in animal models to affect several risk factors for the development of left-ventricular hypertrophy, but this phenotype has not, thus far, been investigated in humans. We examined the relationship between common genetic polymorphisms in the CD36 gene and left-ventricular mass.

Methods And Results: We studied a cohort of 255 families comprising 1425 individuals ascertained via a hypertensive proband. Seven single-nucleotide polymorphisms which together tagged common genetic variation in the CD36 gene were genotyped using a SEQUENOM MALDI-TOF instrument. There was evidence of association between the rs1761663 polymorphism in intron 1 of the CD36 gene and left-ventricular mass determined either by echocardiography (P=0.003, N=780) or electrocardiography (P=0.001, N=814). There was also association between rs1761663 genotype and body mass index (P<0.001, N=1354). Genotype was associated with between 2 and 8% differences in these phenotypes per allele. After adjustment for the effect of body mass index, there remained significant associations between genotype and left ventricular mass measured either by echo (P=0.017) or ECG (P=0.007).

Conclusions: Genotype at the rs1761663 polymorphism has independent effects both on body mass index and left-ventricular mass. Genes with such pleiotropic effects may be particularly attractive therapeutic targets for interventions to modify multiple risk factors for cardiovascular events.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
April 2011

Cardiac nitric oxide synthase 1 regulates basal and beta-adrenergic contractility in murine ventricular myocytes.

Circulation 2002 Jun;105(25):3011-6

University Department of Cardiovascular Medicine, John Radcliffe Hospital, Oxford, UK.

Background: Evidence indicates that myocardial NO production can modulate contractility, but the source of NO remains uncertain. Here, we investigated the role of a type 1 NO synthase isoform (NOS1), which has been recently localized to the cardiac sarcoplasmic reticulum, in the regulation of basal and beta-adrenergic myocardial contraction.

Methods And Results: Contraction was assessed in left ventricular myocytes isolated from mice with NOS1 gene disruption (NOS1(-/-) mice) and their littermate controls (NOS1(+/+) mice) at 3 stimulation frequencies (1, 3, and 6 Hz) in basal conditions and during beta-adrenergic stimulation with isoproterenol (2 nmol/L). In addition, we examined the effects of acute specific inhibition of NOS1 with vinyl-L-N-5-(1-imino-3-butenyl)-L-ornithine (L-VNIO, 500 micromol/L). NOS1((-/-)) myocytes exhibited greater contraction at all frequencies (percent cell shortening at 6 Hz, 10.7+/-0.92% in NOS1(-/-) myocytes versus 7.21+/-0.8% in NOS1(+/+) myocytes; P<0.05) with a flat frequency-contraction relationship. Time to 50% relaxation was increased in NOS1(-/-) myocytes at all frequencies (at 6 Hz, 26.53+/-1.4 ms in NOS1(-/-) myocytes versus 21.27+/-1.3 ms in NOS1(+/+) myocytes; P<0.05). L-VNIO prolonged time to 50% relaxation at all frequencies (at 6 Hz, 21.28+/-1.7 ms in NOS1(+/+) myocytes versus 26.45+/-1.4 ms in NOS1(+/+)+L-VNIO myocytes; P<0.05) but did not significantly increase basal contraction. However, both NOS1(-/-) myocytes and NOS1(+/+) myocytes treated with L-VNIO showed a greatly enhanced contraction in response to beta-adrenergic stimulation (percent increase in contraction at 6 Hz, 25.2+/-10.8 in NOS1(+/+) myocytes, 68.2+/-11.2 in NOS1(-/-) myocytes, and 65.1+/-13.2 in NOS1(+/+)+L-VNIO myocytes; P<0.05).

Conclusions: NOS1 disruption enhances basal contraction and the inotropic response to beta-adrenergic stimulation in murine ventricular myocytes. These findings indicate that cardiac NOS1-derived NO plays a significant role in the autocrine regulation of myocardial contractility.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
June 2002

Genotype at a promoter polymorphism of the interleukin-6 gene is associated with baseline levels of plasma C-reactive protein.

Cardiovasc Res 2002 Mar;53(4):1029-34

Department of Medicine and Therapeutics, University of Aberdeen, Aberdeen, UK.

Objective: Baseline concentrations of plasma C-reactive protein (CRP) are associated with coronary heart disease. Interleukin-6 (IL-6) regulates CRP gene expression; a promoter polymorphism (-174G/C) of the IL-6 gene has been shown to influence IL-6 transcription but the relationship between genotype at this polymorphism and circulating levels of inflammatory markers remains unclear. We hypothesised that plasma CRP would be a heritable phenotype that would be influenced by genotype at this polymorphism.

Methods: We measured baseline plasma CRP and determined genotypes at the -174G/C polymorphism of the IL-6 gene in 588 members of 98 nuclear families. The heritability of plasma CRP and the association of plasma CRP with genotype were determined using variance components methods.

Results: Baseline CRP levels were highly heritable (h(2)=0.39, P<0.0000001). Presence of the -174C allele was associated with higher baseline CRP levels, both in the whole population (P=0.01), and in the founders only (n=128, P=0.001). Family-based analyses confirmed the association (P=0.02) suggesting that it arises from chromosomal proximity or identity of the typed polymorphism with a genetic variant influencing baseline CRP levels.

Conclusions: Baseline plasma CRP is a significantly heritable cardiovascular risk factor. Levels are associated with genotype at the -174G/C polymorphism of the IL-6 gene.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
March 2002