Publications by authors named "Hossam Taha Mohamed"

14 Publications

  • Page 1 of 1

IL-8 secreted by tumor associated macrophages contribute to lapatinib resistance in HER2-positive locally advanced breast cancer via activation of Src/STAT3/ERK1/2-mediated EGFR signaling.

Biochim Biophys Acta Mol Cell Res 2021 May 2;1868(6):118995. Epub 2021 Mar 2.

Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; Director of Biotechnology program, Faculty of Science, Galala University, 43511 Suez, Egypt. Electronic address:

Locally advanced breast cancer (LABC) is an aggressive disease characterized by late clinical presentation, large tumor size, treatment resistance and low survival rate. Expression of EGFR/HER2 and activation of intracellular tyrosine kinase domains in LABC are associated with poor prognosis. Thus, target therapies such as the anti-receptor tyrosine kinases lapatinib drug have been more developed in the past decade. The response to lapatinib involves the inhibition of RTKs and subsequently signaling molecules such as Src/STAT3/Erk1/2 known also to be activated by the cytokines in the tumor microenvironment (TME). The aim of the present study is to identify the major cytokine that might contribute to lapatinib resistance in EGFR+/HER2+ LABC patients. Indeed, tumor associated macrophages (TAMs) are the main source of cytokines in the TME. Herein, we isolated TAMs from LABC during modified radical mastectomy (MRM). Cytokine profile of TAMs revealed that IL-8 is the most prominent highly secreted cytokine by TAMs of LABC patients. Using in-vitro cell culture model we showed that recombinant IL-8 (50 and 100 ng/mL) at different time intervals interfere with lapatinib action via activation of Src/EGFR and signaling molecules known to be inhibited during treatment. We proposed that to improve LABC patients' response to lapatinib treatment it is preferred to use combined therapy that neutralize or block the action of IL-8.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamcr.2021.118995DOI Listing
May 2021

Infrared Microspectroscopy and Imaging Analysis of Inflammatory and Non-Inflammatory Breast Cancer Cells and Their GAG Secretome.

Molecules 2020 Sep 19;25(18). Epub 2020 Sep 19.

Laboratoire de Biochimie Médicale et Biologie Moléculaire, Université de Reims Champagne-Ardenne, 51097 Reims, France.

Glycosaminoglycans (GAGs)/proteoglycans (PGs) play a pivotal role in the metastasis of inflammatory breast cancer (IBC). They represent biomarkers and targets in diagnosis and treatment of different cancers including breast cancer. Thus, GAGs/PGs could represent potential prognostic/diagnostic biomarkers for IBC. In the present study, non-IBC MDA-MB-231, MCF7, SKBR3 cells and IBC SUM149 cells, as well as their GAG secretome were analyzed. The latter was measured in toto as dried drops with high-throughput (HT) Fourier Transform InfraRed (FTIR) spectroscopy and imaging. FTIR imaging was also employed to investigate single whole breast cancer cells while synchrotron-FTIR microspectroscopy was used to specifically target their cytoplasms. Data were analyzed by hierarchical cluster analysis and principal components analysis. Results obtained from HT-FTIR analysis of GAG drops showed that the inter-group variability enabled us to delineate between cell types in the GAG absorption range 1350-800 cm. Similar results were obtained for FTIR imaging of GAG extracts and fixed single whole cells. Synchrotron-FTIR data from cytoplasms allowed discrimination between non-IBC and IBC. Thus, by using GAG specific region, not only different breast cancer cell lines could be differentiated, but also non-IBC from IBC cells. This could be a potential diagnostic spectral marker for IBC detection useful for patient management.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/molecules25184300DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570935PMC
September 2020

HS2ST1-dependent signaling pathways determine breast cancer cell viability, matrix interactions, and invasive behavior.

Cancer Sci 2020 Aug 9;111(8):2907-2922. Epub 2020 Jul 9.

Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany.

Heparan sulfate proteoglycans (HSPGs) act as signaling co-receptors by interaction of their sulfated glycosaminoglycan chains with numerous signaling molecules. In breast cancer, the function of heparan sulfate 2-O-sulfotransferase (HS2ST1), the enzyme mediating 2-O-sulfation of HS, is largely unknown. Hence, a comparative study on the functional consequences of HS2ST1 overexpression and siRNA knockdown was performed in the breast cancer cell lines MCF-7 and MDA-MB-231. HS2ST1 overexpression inhibited Matrigel invasion, while its knockdown reversed the phenotype. Likewise, cell motility and adhesion to fibronectin and laminin were affected by altered HS2ST1 expression. Phosphokinase array screening revealed a general decrease in signaling via multiple pathways. Fluorescent ligand binding studies revealed altered binding of fibroblast growth factor 2 (FGF-2) to HS2ST1-expressing cells compared with control cells. HS2ST1-overexpressing cells showed reduced MAPK signaling responses to FGF-2, and altered expression of epidermal growth factor receptor (EGFR), E-cadherin, Wnt-7a, and Tcf4. The increased viability of HS2ST1-depleted cells was reduced to control levels by pharmacological MAPK pathway inhibition. Moreover, MAPK inhibitors generated a phenocopy of the HS2ST1-dependent delay in scratch wound repair. In conclusion, HS2ST1 modulation of breast cancer cell invasiveness is a compound effect of altered E-cadherin and EGFR expression, leading to altered signaling via MAPK and additional pathways.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/cas.14539DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7419026PMC
August 2020

Label-Free Infrared Spectral Histology of Skin Tissue Part II: Impact of a Lumican-Derived Peptide on Melanoma Growth.

Front Cell Dev Biol 2020 29;8:377. Epub 2020 May 29.

Université de Reims Champagne-Ardenne, BioSpecT-EA7506, Reims, France.

Melanoma is the most aggressive type of cutaneous malignancies. In addition to its role as a regulator of extracellular matrix (ECM) integrity, lumican, a small leucine-rich proteoglycan, also exhibits anti-tumor properties in melanoma. This work focuses on the use of infrared spectral imaging (IRSI) and histopathology (IRSH) to study the effect of lumican-derived peptide (L9Mc) on B16F1 melanoma primary tumor growth. Female C57BL/6 mice were injected with B16F1 cells treated with L9Mc ( = 10) or its scrambled peptide ( = 8), and without peptide (control, = 9). The melanoma primary tumors were subjected to histological and IR imaging analysis. In addition, immunohistochemical staining was performed using anti-Ki-67 and anti-cleaved caspase-3 antibodies. The IR images were analyzed by common K-means clustering to obtain high-contrast IRSH that allowed identifying different ECM tissue regions from the epidermis to the tumor area, which correlated well with H&E staining. Furthermore, IRSH showed good correlation with immunostaining data obtained with anti-Ki-67 and anti-cleaved caspase-3 antibodies, whereby the L9Mc peptide inhibited cell proliferation and increased strongly apoptosis of B16F1 cells in this mouse model of melanoma primary tumors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fcell.2020.00377DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7273845PMC
May 2020

IL-8 and MCP-1/CCL2 regulate proteolytic activity in triple negative inflammatory breast cancer a mechanism that might be modulated by Src and Erk1/2.

Toxicol Appl Pharmacol 2020 08 5;401:115092. Epub 2020 Jun 5.

Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt. Electronic address:

Inflammatory breast cancer (IBC) is a highly metastatic and lethal breast cancer. As many as 25-30% of IBCs are triple negative (TN) and associated with low survival rates and poor prognosis. We found that the microenvironment of IBC is characterized by high infiltration of tumor associated macrophages (TAMs) and by over-expression of the cysteine protease cathepsin B (CTSB). TAMs in IBC secrete high levels of the cytokines interleukin-8 (IL-8) and monocyte chemoattractant protein-1 (MCP-1/CCL2) compared to non-IBC patients. Herein, we tested the roles of IL-8 and MCP-1/CCL2 in modulating proteolytic activity and invasiveness of TN-non-IBC as compared to TN-IBC and addressed the underlying molecular mechanism(s) for both cytokines. Quantitative real time PCR results showed that IL-8 and MCP-1/CCL2 were significantly overexpressed in tissues of TN-IBCs. IL-8 and MCP-1/CCL2 induced CTSB expression and activity of the p-Src and p-Erk1/2 signaling pathways relevant for invasion and metastasis in TN-non-IBC, HCC70 cells and TN-IBC, SUM149 cells. Dasatinib, an inhibitor of p-Src, and U0126, an inhibitor of p-Erk1/2, down-regulated invasion and expression of CTSB by HCC70 and SUM149 cells, a mechanism that is reversed by IL-8 and MCP-1/CCL2. Our study shows that targeting the cytokines IL-8 and MCP-1/CCL2 and associated signaling molecules may represent a promising therapeutic strategy in TN-IBC patients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.taap.2020.115092DOI Listing
August 2020

Antiviral Activity of Chitosan Nanoparticles Encapsulating Curcumin Against Hepatitis C Virus Genotype 4a in Human Hepatoma Cell Lines.

Int J Nanomedicine 2020 22;15:2699-2715. Epub 2020 Apr 22.

The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA.

Purpose: Current direct-acting antiviral agents for treatment of hepatitis C virus genotype 4a (HCV-4a) have been reported to cause adverse effects, and therefore less toxic antivirals are needed. This study investigated the role of curcumin chitosan (CuCs) nanocomposite as a potential anti-HCV-4a agent in human hepatoma cells Huh7.

Methods: Docking of curcumin and CuCs nanocomposite and binding energy calculations were carried out. Chitosan nanoparticles (CsNPs) and CuCs nanocomposite were prepared with an ionic gelation method and characterized with TEM, zeta size and potential, and HPLC to calculate encapsulation efficiency. Cytotoxicity studies were performed on Huh7 cells using MTT assay and confirmed with cellular and molecular assays. Anti-HCV-4a activity was determined using real-time PCR and Western blot.

Results: The strength of binding interactions between protein ligand complexes gave scores with NS3 protease, NS5A polymerase, and NS5B polymerase of -124.91, -159.02, and -129.16, for curcumin respectively, and -68.51, -54.52, and -157.63 for CuCs nanocomposite, respectively. CuCs nanocomposite was prepared at sizes 29-39.5 nm and charges of 33 mV. HPLC detected 4% of curcumin encapsulated into CsNPs. IC50 was 8 µg/mL for curcumin and 25 µg/mL for the nanocomposite on Huh7 but was 25.8 µg/mL and 34 µg/mL on WISH cells. CsNPs had no cytotoxic effect on tested cell lines. Apoptotic genes' expression revealed the caspase-dependent pathway mechanism. CsNPs and CuCs nanocomposite demonstrated 100% inhibition of viral entry and replication, which was confirmed with HCV core protein expression.

Conclusion: CuCs nanocomposite inhibited HCV-4a entry and replication compared to curcumin alone, suggesting its potential role as an effective therapeutic agent.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2147/IJN.S241702DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7184126PMC
July 2020

Characterization of inflammatory breast cancer: a vibrational microspectroscopy and imaging approach at the cellular and tissue level.

Analyst 2018 Dec;143(24):6103-6112

Université de Reims Champagne-Ardenne, Laboratoire de Biochimie Médicale et de Biologie Moléculaire, UFR de Médecine, Reims, France.

Inflammatory breast cancer (IBC) has a poor prognosis because of the lack of specific biomarkers and its late diagnosis. An accurate and rapid diagnosis implemented early enough can significantly improve the disease outcome. Vibrational spectroscopy has proven to be useful for cell and tissue characterization based on the intrinsic molecular information. Here, we have applied infrared and Raman microspectroscopy and imaging to differentiate between non-IBC and IBC at both cell and tissue levels. Two human breast cancer cell lines (MDA-MB-231 and SUM-149), 20 breast cancer patients (10 non-IBC and 10 IBC), and 4 healthy volunteer biopsies were investigated. Fixed cells and tissues were analyzed by FTIR microspectroscopy and imaging, while live cells were studied by Raman microspectroscopy. Spectra were analyzed by hierarchical cluster analysis (HCA) and images by common k-means clustering algorithms. For both cell suspensions and single cells, FTIR spectroscopy showed sufficient high inter-group variability to delineate MDA-MB-231 and SUM-149 cell lines. Most significant differences were observed in the spectral regions of 1096-1108 and 1672-1692 cm-1. Analysis of live cells by Raman microspectroscopy gave also a good discrimination of these cell types. The most discriminant regions were 688-992, 1019-1114, 1217-1375 and 1516-1625 cm-1. Finally, k-means cluster analysis of FTIR images allowed delineating non-IBC from IBC tissues. This study demonstrates the potential of vibrational spectroscopy and imaging to discriminate between non-IBC and IBC at both cell and tissue levels.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8an01292jDOI Listing
December 2018

IL-10 correlates with the expression of carboxypeptidase B2 and lymphovascular invasion in inflammatory breast cancer: The potential role of tumor infiltrated macrophages.

Curr Probl Cancer 2018 Mar - Apr;42(2):215-230. Epub 2018 Jan 10.

Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt; Breast-Gynecological International Cancer Society, Cairo, Egypt. Electronic address:

Pro-carboxypeptidase B2 (pro-CPB2) or thrombin-activatable fibrinolysis inhibitor (TAFI) is a glycoprotein encoded by the CPB2 gene and deregulated in several cancer types, including breast cancer. Thrombin binding to thrombomodulin (TM), encoded by THBD, is important for TAFI activation. CPB2 gene expression is influenced by genetic polymorphism and cytokines such as interleukin 10 (IL-10). Our previous results showed that tumor infiltrating monocytes/macrophages (CD14/CD16) isolated from inflammatory breast cancer (IBC) patients' secrete high levels of IL-10. The aim of the present study is to test genetic polymorphism and expression of CPB2 in healthy breast tissues and carcinoma tissues of non-IBC and IBC patients. Furthermore, to investigate whether IL-10 modulates the expression of CPB2 and THBD in vivo and in-vitro. We tested CPB2 Thr325Ile polymorphism using restriction fragment length polymorphism, (RFLP) technique in healthy and carcinoma breast tissues. The mRNA expression of CPB2, THBD and IL10 were assessed by RT-qPCR. Infiltration of CD14 cells was assessed by immunohistochemistry. In addition, we investigated the correlation between infiltration of CD14 cells and expression of IL10 and CPB2. Furthermore, we correlated IL10 expression with the expression of both CPB2 and THBD in breast carcinoma tissues. Finally, we validated the role of recombinant IL-10 in regulating the expression of CPB2 and THBD using different breast cancer cell lines. Our results showed that CPB2 genotypes carrying the high-risk allele [Thr/Ile (CT) and Ile/Ile (TT)] were more frequent in both IBC and non-IBC patients compared to control group. CPB2 genotypes did not show any statistical correlation with CPB2 mRNA expression levels or patients' clinical pathological properties. Interestingly, CPB2 and IL10 expression were significantly higher and positively correlated with the incidence of CD14 cells in carcinoma tissues of IBC as compared to non-IBC. On the other hand, THBD expression was significantly lower in IBC carcinoma versus non-IBC tissues. Based on molecular subtypes, CPB2 and IL10 expression were significantly higher in triple negative (TN) as compared to hormonal positive (HP) carcinoma tissues of IBC. Moreover, CPB2 expression was positively correlated with presence of lymphovascular invasion and the expression of IL10 in carcinoma tissues of IBC patients. Furthermore, recombinant human IL-10 stimulated CPB2 expression in SUM-149 (IBC cell line) but not in MDA-MB-231 (non-IBC cell line), while there was no significant effect THBD expression. In conclusion, carcinoma tissues of IBC patients are characterized by higher expression of CPB2 and lower expression of THBD. Moreover, CPB2 positively correlates with IL10 mRNA expression, incidence of CD14 cells and lymphovascular invasion in IBC patients. IL-10 stimulated CPB2 expression in TN-IBC cell line suggests a relevant role of CPB2 in the aggressive phenotype of IBC.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.currproblcancer.2018.01.009DOI Listing
April 2019

Inflammatory breast cancer: High incidence of GCC haplotypes (-1082A/G, -819T/C, and -592A/C) in the interleukin-10 gene promoter correlates with over-expression of interleukin-10 in patients' carcinoma tissues.

Tumour Biol 2017 Jul;39(7):1010428317713393

1 Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt.

Interleukin-10 is involved in carcinogenesis by supporting tumor escape from the immune response. The aim of this study was to assess the single nucleotide polymorphisms, -1082A/G, -819T/C and -592A/C, in interleukin-10 gene promoter in inflammatory breast cancer compared to non-inflammatory breast cancer and association of these polymorphisms with interleukin-10 gene expression. We enrolled 105 breast cancer tissue (72 non-inflammatory breast cancer and 33 inflammatory breast cancer) patients and we determined the three studied single nucleotide polymorphisms in all samples by polymerase chain reaction restriction fragment length polymorphism and investigated their association with the disease and with various prognostic factors. In addition, we assessed the expression of interleukin-10 gene by real-time quantitative reverse transcription polymerase chain reaction and the correlation between studied single nucleotide polymorphisms and interleukin-10 messenger RNA expression. We found co-dominant effect as the best inheritance model (in the three studied single nucleotide polymorphisms in non-inflammatory breast cancer and inflammatory breast cancer samples), and we didn't identify any association between single nucleotide polymorphisms genotypes and breast cancer prognostic factors. However, GCC haplotype was found highly associated with inflammatory breast cancer risk (p < 0.001, odds ratio = 43.05). Moreover, the expression of interleukin-10 messenger RNA was significantly higher (p < 0.001) by 5.28-fold and 8.95-fold than non-inflammatory breast cancer and healthy control, respectively, where GCC haplotype significantly increased interleukin-10 gene expression (r = 0.9, p < 0.001).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1177/1010428317713393DOI Listing
July 2017

Syndecan-1 is a novel molecular marker for triple negative inflammatory breast cancer and modulates the cancer stem cell phenotype via the IL-6/STAT3, Notch and EGFR signaling pathways.

Mol Cancer 2017 03 7;16(1):57. Epub 2017 Mar 7.

Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, D11, 48149, Münster, Germany.

Background: Inflammatory breast cancer (IBC), a particularly aggressive form of breast cancer, is characterized by cancer stem cell (CSC) phenotype. Due to a lack of targeted therapies, the identification of molecular markers of IBC is of major importance. The heparan sulfate proteoglycan Syndecan-1 acts as a coreceptor for growth factors and chemokines, modulating inflammation, tumor progression, and cancer stemness, thus it may emerge as a molecular marker for IBC.

Methods: We characterized expression of Syndecan-1 and the CSC marker CD44, Notch-1 & -3 and EGFR in carcinoma tissues of triple negative IBC (n = 13) and non-IBC (n = 17) patients using qPCR and immunohistochemistry. Impact of siRNA-mediated Syndecan-1 knockdown on the CSC phenotype of the human triple negative IBC cell line SUM-149 and HER-2-overexpressing non-IBC SKBR3 cells employing qPCR, flow cytometry, Western blotting, secretome profiling and Notch pharmacological inhibition experiments. Data were statistically analyzed using Student's t-test/Mann-Whitney U-test or one-way ANOVA followed by Tukey's multiple comparison tests.

Results: Our data indicate upregulation and a significant positive correlation of Syndecan-1 with CD44 protein, and Notch-1 & -3 and EGFR mRNA in IBC vs non-IBC. ALDH1 activity and the CD44CD24 subset as readout of a CSC phenotype were reduced upon Syndecan-1 knockdown. Functionally, Syndecan-1 silencing significantly reduced 3D spheroid and colony formation. Intriguingly, qPCR results indicate downregulation of the IL-6, IL-8, CCL20, gp130 and EGFR mRNA upon Syndecan-1 suppression in both cell lines. Moreover, Syndecan-1 silencing significantly downregulated Notch-1, -3, -4 and Hey-1 in SUM-149 cells, and downregulated only Notch-3 and Gli-1 mRNA in SKBR3 cells. Secretome profiling unveiled reduced IL-6, IL-8, GRO-alpha and GRO a/b/g cytokines in conditioned media of Syndecan-1 knockdown SUM-149 cells compared to controls. The constitutively activated STAT3 and NFκB, and expression of gp130, Notch-1 & -2, and EGFR proteins were suppressed upon Syndecan-1 ablation. Mechanistically, gamma-secretase inhibition experiments suggested that Syndecan-1 may regulate the expression of IL-6, IL-8, gp130, Hey-1, EGFR and p-Akt via Notch signaling.

Conclusions: Syndecan-1 acts as a novel tissue biomarker and a modulator of CSC phenotype of triple negative IBC via the IL-6/STAT3, Notch and EGFR signaling pathways, thus emerging as a promising therapeutic target for IBC.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12943-017-0621-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5341174PMC
March 2017

Implementation of infrared and Raman modalities for glycosaminoglycan characterization in complex systems.

Glycoconj J 2017 06 7;34(3):309-323. Epub 2016 Dec 7.

CNRS UMR7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Reims, France.

Glycosaminoglycans (GAGs) are natural, linear and negatively charged heteropolysaccharides which are incident in every mammalian tissue. They consist of repeating disaccharide units, which are composed of either sulfated or non-sulfated monosaccharides. Depending on tissue types, GAGs exhibit structural heterogeneity such as the position and degree of sulfation or within their disaccharide units composition being heparin, heparan sulfate, chondroitine sulfate, dermatan sulfate, keratan sulfate, and hyaluronic acid. They are covalently linked to a core protein (proteoglycans) or as free chains (hyaluronan). GAGs affect cell properties and functions either by direct interaction with cell receptors or by sequestration of growth factors. These evidences of divert biological roles of GAGs make their characterization at cell and tissue levels of importance. Thus, non-invasive techniques are interesting to investigate, to qualitatively and quantitatively characterize GAGs in vitro in order to use them as diagnostic biomarkers and/or as therapeutic targets in several human diseases including cancer. Infrared and Raman microspectroscopies and imaging are sensitive enough to differentiate and classify GAG types and subtypes in spite of their close molecular structures. Spectroscopic markers characteristic of reference GAG molecules were identified. Beyond these investigations of the standard GAG spectral signature, infrared and Raman spectral signatures of GAG were searched in complex biological systems like cells. The aim of the present review is to describe the implementation of these complementary vibrational spectroscopy techniques, and to discuss their potentials, advantages and disadvantages for GAG analysis. In addition, this review presents new data as we show for the first time GAG infrared and Raman spectral signatures from conditioned media and live cells, respectively.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10719-016-9743-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5487820PMC
June 2017

Inflammatory and Non-inflammatory Breast Cancer: A Potential Role for Detection of Multiple Viral DNAs in Disease Progression.

Ann Surg Oncol 2016 Feb 27;23(2):494-502. Epub 2015 Oct 27.

Cancer Biology Research Lab, Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt.

Background: Inflammatory breast cancer (IBC) is the most lethal form of breast cancer. Multiple viral infections in IBC tissues were found to be associated with disease pathogenesis.

Objective: The aim of the present study was to correlate the incidence of viral DNA with breast cancer progression.

Materials And Methods: Overall, 135 women diagnosed with breast cancer were enrolled in this study. Using polymerase chain reaction and sequencing assays, we determined the incidence of human papillomavirus types 16 and 18 (HPV-16 and -18), human cytomegalovirus (HCMV), Epstein-Barr virus, human herpes simplex virus type 1 and 2, and human herpes virus type 8 (HHV-8) in breast carcinoma tissue biopsies. We also assessed the expression of the cell proliferation marker Ki-67 by immunohistochemistry in association with the incidence of viral DNA.

Results: HCMV and HPV-16 were the most detected viral DNAs in breast carcinoma tissues; however, the frequency of HCMV and HHV-8 DNA were significantly higher in IBC than non-IBC tissues. Moreover, the prevalence of multiple viral DNAs was higher in IBC than non-IBC tissues. The incidence of multiple viral DNAs positively correlates with tumor size and number of metastatic lymph nodes in both non-IBC and IBC patients. The expression of Ki-67 was found to be significantly higher in both non-IBC and IBC tissues in which multiple viral DNAs were detected.

Conclusions: The incidence of multiple viral DNAs in IBC tissues was higher compared with non-IBC tissues. The present results suggest the possibility of a functional relationship between the presence of multiple viral DNAs and disease pathogenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1245/s10434-015-4888-2DOI Listing
February 2016

Inflammatory breast cancer: high incidence of detection of mixed human cytomegalovirus genotypes associated with disease pathogenesis.

Front Oncol 2014 11;4:246. Epub 2014 Sep 11.

Department of Zoology, Faculty of Science, Cairo University , Giza , Egypt.

Inflammatory breast cancer (IBC) is a highly metastatic, aggressive, and fatal form of breast cancer. Patients presenting with IBC are characterized by a high number of axillary lymph node metastases. Recently, we found that IBC carcinoma tissues contain significantly higher levels of human cytomegalovirus (HCMV) DNA compared to other breast cancer tissues that may regulate cell signaling pathways. In fact, HCMV pathogenesis and clinical outcome can be statistically associated with multiple HCMV genotypes within IBC. Thus, in the present study, we established the incidence and types of HCMV genotypes present in carcinoma tissues of infected non-IBC versus IBC patients. We also assessed the correlation between detection of mixed genotypes of HCMV and disease progression. Genotyping of HCMV in carcinoma tissues revealed that glycoprotein B (gB)-1 and glycoprotein N (gN)-1 were the most prevalent HCMV genotypes in both non-IBC and IBC patients with no significant difference between patients groups. IBC carcinoma tissues, however, showed statistically significant higher incidence of detection of the gN-3b genotype compared to non-IBC patients. The incidence of detection of mixed genotypes of gB showed that gB-1 + gB-3 was statistically significantly higher in IBC than non-IBC patients. Similarly, the incidence of detection of mixed genotypes of gN showed that gN-1 + gN-3b and gN-3 + gN-4b/c were statistically significant higher in the carcinoma tissues of IBC than non-IBC. Mixed presence of different HCMV genotypes was found to be significantly correlated with the number of metastatic lymph nodes in non-IBC but not in IBC patients. In IBC, detection of mixed HCMV different genotypes significantly correlates with lymphovascular invasion and formation of dermal lymphatic emboli, which was not found in non-IBC patients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fonc.2014.00246DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4160966PMC
October 2014

Human cytomegalovirus infection enhances NF-κB/p65 signaling in inflammatory breast cancer patients.

PLoS One 2013 13;8(2):e55755. Epub 2013 Feb 13.

Department of General Surgery, Faculty of Medicine, Ain Shams University, Cairo, Egypt.

Human Cytomegalovirus (HCMV) is an endemic herpes virus that re-emerges in cancer patients enhancing oncogenic potential. Recent studies have shown that HCMV infection is associated with certain types of cancer morbidity such as glioblastoma. Although HCMV has been detected in breast cancer tissues, its role, if any, in the etiology of specific forms of breast cancer has not been investigated. In the present study we investigated the presence of HCMV infection in inflammatory breast cancer (IBC), a rapidly progressing form of breast cancer characterized by specific molecular signature. We screened for anti-CMV IgG antibodies in peripheral blood of 49 non-IBC invasive ductal carcinoma (IDC) and 28 IBC patients. In addition, we screened for HCMV-DNA in postsurgical cancer and non-cancer breast tissues of non-IBC and IBC patients. We also tested whether HCMV infection can modulate the expression and activation of transcriptional factor NF-κB/p65, a hallmark of IBC. Our results reveal that IBC patients are characterized by a statistically significant increase in HCMV IgG antibody titers compared to non-IBC patients. HCMV-DNA was significantly detected in cancer tissues than in the adjacent non-carcinoma tissues of IBC and IDC, and IBC cancer tissues were significantly more infected with HCMV-DNA compared to IDC. Further, HCMV sequence analysis detected different HCMV strains in IBC patients tissues, but not in the IDC specimens. Moreover, HCMV-infected IBC cancer tissues were found to be enhanced in NF-κB/p65 signaling compared to non-IBC patients. The present results demonstrated a correlation between HCMV infection and IBC. Etiology and causality of HCMV infection with IBC now needs to be rigorously examined.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0055755PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3572094PMC
August 2013