Publications by authors named "Holger Haselmann"

8 Publications

  • Page 1 of 1

Autoimmune encephalitis: novel therapeutic targets at the preclinical level.

Expert Opin Ther Targets 2021 Jan 31;25(1):37-47. Epub 2020 Dec 31.

Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital , Jena, Germany.

Introduction: Antibody-mediated encephalitides (AE) with pathogenic autoantibodies (aAB) against neuronal surface antigens are a growing group of diseases characterized by antineuronal autoimmunity in the brain. AE patients typically present with rapidly progressive encephalitis and characteristic disease symptoms dependent on the target antigen. Current treatment consists of an escalating immunotherapy strategy including plasma exchange, steroid application, and B cell depletion.

Areas Covered: For this review, we searched Medline database and google scholar with inclusive dates from 2000. We summarize current treatment strategies and present novel therapeutic approaches of target-specific interventions at the pre-clinical level as well as immunotherapy directed at antibody-induced pathology. Treatment options include modulation of target proteins, intervention with downstream pathways, antibody modification, and depletion of antibody-secreting cells.

Expert Opinion: Although current therapies in AE are effective in many patients, recovery is often prolonged and relapses as well as persistent deficits can occur. Specific immunotherapy together with supportive target-specific therapy may provide faster control of severe symptoms, shorten the disease course, and lead to long-lasting disease stability. Among the various novel therapeutic approaches, modulation of targeted receptors by small molecules crossing the blood-brain barrier as well as prevention of aAB binding is of particular interest.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/14728222.2021.1856370DOI Listing
January 2021

Stroke Accelerates and Uncouples Intrinsic and Synaptic Excitability Maturation of Mouse Hippocampal DCX Adult-Born Granule Cells.

J Neurosci 2019 02 7;39(9):1755-1766. Epub 2019 Jan 7.

Hans Berger Department of Neurology,

Stroke robustly stimulates adult neurogenesis in the hippocampal dentate gyrus. It is currently unknown whether this process induces beneficial or maladaptive effects, but morphological and behavioral studies have reported aberrant neurogenesis and impaired hippocampal-dependent memory following stroke. However, the intrinsic function and network incorporation of adult-born granule cells (ABGCs) after ischemia is unclear. Using patch-clamp electrophysiology, we evaluated doublecortin-positive (DCX) ABGCs as well as DCX dentate gyrus granule cells 2 weeks after a stroke or sham operation in DCXDsRed transgenic mice of either sex. The developmental status, intrinsic excitability, and synaptic excitability of ABGCs were accelerated following stroke, while dendritic morphology was not aberrant. Regression analysis revealed uncoupled development of intrinsic and network excitability, resulting in young, intrinsically hyperexcitable ABGCs receiving disproportionately large glutamatergic inputs. This aberrant functional maturation in the subgroup of ABGCs in the hippocampus may contribute to defective hippocampal function and increased seizure susceptibility following stroke. Stroke increases hippocampal neurogenesis but the functional consequences of the postlesional response is mostly unclear. Our findings provide novel evidence of aberrant functional maturation of newly generated neurons following stroke. We demonstrate that stroke not only causes an accelerated maturation of the intrinsic and synaptic parameters of doublecortin-positive, new granule cells in the hippocampus, but that this accelerated development does not follow physiological dynamics due to uncoupled intrinsic and synaptic maturation. Hyperexcitable immature neurons may contribute to disrupted network integration following stroke.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1523/JNEUROSCI.3303-17.2018DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6391573PMC
February 2019

LGI1 antibodies alter Kv1.1 and AMPA receptors changing synaptic excitability, plasticity and memory.

Brain 2018 11;141(11):3144-3159

Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany.

Leucine-rich glioma-inactivated 1 (LGI1) is a secreted neuronal protein that forms a trans-synaptic complex that includes the presynaptic disintegrin and metalloproteinase domain-containing protein 23 (ADAM23), which interacts with voltage-gated potassium channels Kv1.1, and the postsynaptic ADAM22, which interacts with AMPA receptors. Human autoantibodies against LGI1 associate with a form of autoimmune limbic encephalitis characterized by severe but treatable memory impairment and frequent faciobrachial dystonic seizures. Although there is evidence that this disease is immune-mediated, the underlying LGI1 antibody-mediated mechanisms are unknown. Here, we used patient-derived immunoglobulin G (IgG) antibodies to determine the main epitope regions of LGI1 and whether the antibodies disrupt the interaction of LGI1 with ADAM23 and ADAM22. In addition, we assessed the effects of patient-derived antibodies on Kv1.1, AMPA receptors, and memory in a mouse model based on cerebroventricular transfer of patient-derived IgG. We found that IgG from all patients (n = 25), but not from healthy participants (n = 20), prevented the binding of LGI1 to ADAM23 and ADAM22. Using full-length LGI1, LGI3, and LGI1 constructs containing the LRR1 domain (EPTP1-deleted) or EPTP1 domain (LRR3-EPTP1), IgG from all patients reacted with epitope regions contained in the LRR1 and EPTP1 domains. Confocal analysis of hippocampal slices of mice infused with pooled IgG from eight patients, but not pooled IgG from controls, showed a decrease of total and synaptic levels of Kv1.1 and AMPA receptors. The effects on Kv1.1 preceded those involving the AMPA receptors. In acute slice preparations of hippocampus, patch-clamp analysis from dentate gyrus granule cells and CA1 pyramidal neurons showed neuronal hyperexcitability with increased glutamatergic transmission, higher presynaptic release probability, and reduced synaptic failure rate upon minimal stimulation, all likely caused by the decreased expression of Kv1.1. Analysis of synaptic plasticity by recording field potentials in the CA1 region of the hippocampus showed a severe impairment of long-term potentiation. This defect in synaptic plasticity was independent from Kv1 blockade and was possibly mediated by ineffective recruitment of postsynaptic AMPA receptors. In parallel with these findings, mice infused with patient-derived IgG showed severe memory deficits in the novel object recognition test that progressively improved after stopping the infusion of patient-derived IgG. Different from genetic models of LGI1 deficiency, we did not observe aberrant dendritic sprouting or defective synaptic pruning as potential cause of the symptoms. Overall, these findings demonstrate that patient-derived IgG disrupt presynaptic and postsynaptic LGI1 signalling, causing neuronal hyperexcitability, decreased plasticity, and reversible memory deficits.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/brain/awy253DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6202570PMC
November 2018

Human Autoantibodies against the AMPA Receptor Subunit GluA2 Induce Receptor Reorganization and Memory Dysfunction.

Neuron 2018 10 23;100(1):91-105.e9. Epub 2018 Aug 23.

Hans-Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany. Electronic address:

AMPA receptors are essential for fast excitatory transmission in the CNS. Autoantibodies to AMPA receptors have been identified in humans with autoimmune encephalitis and severe defects of hippocampal function. Here, combining electrophysiology and high-resolution imaging with neuronal culture preparations and passive-transfer models in wild-type and GluA1-knockout mice, we analyze how specific human autoantibodies against the AMPA receptor subunit GluA2 affect receptor function and composition, synaptic transmission, and plasticity. Anti-GluA2 antibodies induce receptor internalization and a reduction of synaptic GluA2-containing AMPARs followed by compensatory ryanodine receptor-dependent incorporation of synaptic non-GluA2 AMPARs. Furthermore, application of human pathogenic anti-GluA2 antibodies to mice impairs long-term synaptic plasticity in vitro and affects learning and memory in vivo. Our results identify a specific immune-neuronal rearrangement of AMPA receptor subunits, providing a framework to explain disease symptoms.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuron.2018.07.048DOI Listing
October 2018

Ephrin-B2 prevents N-methyl-D-aspartate receptor antibody effects on memory and neuroplasticity.

Ann Neurol 2016 09 2;80(3):388-400. Epub 2016 Aug 2.

Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.

Objective: To demonstrate that ephrin-B2 (the ligand of EphB2 receptor) antagonizes the pathogenic effects of patients' N-methyl-D-aspartate receptor (NMDAR) antibodies on memory and synaptic plasticity.

Methods: One hundred twenty-two C57BL/6J mice infused with cerebrospinal fluid (CSF) from patients with anti-NMDAR encephalitis or controls, with or without ephrin-B2, were investigated. CSF was infused through ventricular catheters connected to subcutaneous osmotic pumps over 14 days. Memory, behavioral tasks, locomotor activity, presence of human antibodies specifically bound to hippocampal NMDAR, and antibody effects on the density of cell-surface and synaptic NMDAR and EphB2 were examined at different time points using reported techniques. Short- and long-term synaptic plasticity were determined in acute brain sections; the Schaffer collateral pathway was stimulated and the field excitatory postsynaptic potentials were recorded in the CA1 region of the hippocampus.

Results: Mice infused with patients' CSF, but not control CSF, developed progressive memory deficit and depressive-like behavior along with deposits of NMDAR antibodies in the hippocampus. These findings were associated with a decrease of the density of cell-surface and synaptic NMDAR and EphB2, and marked impairment of long-term synaptic plasticity without altering short-term plasticity. Administration of ephrin-B2 prevented the pathogenic effects of the antibodies in all the investigated paradigms assessing memory, depressive-like behavior, density of cell-surface and synaptic NMDAR and EphB2, and long-term synaptic plasticity.

Interpretation: Administration of ephrin-B2 prevents the pathogenic effects of anti-NMDAR encephalitis antibodies on memory and behavior, levels of cell-surface NMDAR, and synaptic plasticity. These findings reveal a strategy beyond immunotherapy to antagonize patients' antibody effects. Ann Neurol 2016;80:388-400.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ana.24721DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5832041PMC
September 2016

Human autoantibodies to amphiphysin induce defective presynaptic vesicle dynamics and composition.

Brain 2016 Feb 18;139(Pt 2):365-79. Epub 2015 Nov 18.

1 Hans-Berger Department of Neurology, Jena University Hospital, Erlanger Allee 101, 07747 Jena, Germany 2 Department of Neurology, University of Würzburg, Josef-Schneider Str. 11, 97080 Würzburg, Germany 5 Center for Sepsis Control and Care (CSCC), Jena University Hospital, Erlanger Allee 101, 07747 Jena, Germany

Stiff-person syndrome is the prototype of a central nervous system disorder with autoantibodies targeting presynaptic antigens. Patients with paraneoplastic stiff-person syndrome may harbour autoantibodies to the BAR (Bin/Amphiphysin/Rvs) domain protein amphiphysin, which target its SH3 domain. These patients have neurophysiological signs of compromised central inhibition and respond to symptomatic treatment with medication enhancing GABAergic transmission. High frequency neurotransmission as observed in tonic GABAergic interneurons relies on fast exocytosis of neurotransmitters based on compensatory endocytosis. As amphiphysin is involved in clathrin-mediated endocytosis, patient autoantibodies are supposed to interfere with this function, leading to disinhibition by reduction of GABAergic neurotransmission. We here investigated the effects of human anti-amphiphysin autoantibodies on structural components of presynaptic boutons ex vivo and in vitro using electron microscopy and super-resolution direct stochastic optical reconstruction microscopy. Ultrastructural analysis of spinal cord presynaptic boutons was performed after in vivo intrathecal passive transfer of affinity-purified human anti-amphiphysin autoantibodies in rats and revealed signs of markedly disabled clathrin-mediated endocytosis. This was unmasked at high synaptic activity and characterized by a reduction of the presynaptic vesicle pool, clathrin coated intermediates, and endosome-like structures. Super-resolution microscopy of inhibitory GABAergic presynaptic boutons in primary neurons revealed that specific human anti-amphiphysin immunoglobulin G induced an increase of the essential vesicular protein synaptobrevin 2 and a reduction of synaptobrevin 7. This constellation suggests depletion of resting pool vesicles and trapping of releasable pool vesicular proteins at the plasma membrane. Similar effects were found in amphiphysin-deficient neurons from knockout mice. Application of specific patient antibodies did not show additional effects. Blocking alternative pathways of clathrin-independent endocytosis with brefeldin A reversed the autoantibody induced effects on molecular vesicle composition. Endophilin as an interaction partner of amphiphysin showed reduced clustering within presynaptic terminals. Collectively, these results point towards an autoantibody-induced structural disorganization in GABAergic synapses with profound changes in presynaptic vesicle pools, activation of alternative endocytic pathways, and potentially compensatory rearrangement of proteins involved in clathrin-mediated endocytosis. Our findings provide novel insights into synaptic pathomechanisms in a prototypic antibody-mediated central nervous system disease, which may serve as a proof-of-principle example in this evolving group of autoimmune disorders associated with autoantibodies to synaptic antigens.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/brain/awv324DOI Listing
February 2016

Interactions of Human Autoantibodies with Hippocampal GABAergic Synaptic Transmission - Analyzing Antibody-Induced Effects ex vivo.

Front Neurol 2015 11;6:136. Epub 2015 Jun 11.

Hans Berger Department of Neurology, Jena University Hospital , Jena , Germany ; The Integrated Research and Treatment Center for Sepsis Control and Care (CSCC), Jena University Hospital , Jena , Germany.

Autoantibodies (aAB) to the presynaptic located enzyme glutamate decarboxylase 65 (GAD65) are a characteristic attribute for a variety of autoimmune diseases of the central nervous system including subtypes of limbic encephalitis, stiff person-syndrome, cerebellar ataxia, and Batten's disease. Clinical signs of hyperexcitability and improvement of disease symptoms upon immunotherapy in some of these disorders suggest a possible pathogenic role of associated aAB. Recent experimental studies report inconsistent results regarding a direct pathogenic influence of anti-GAD65 aAB affecting inhibitory synaptic transmission in central GABAergic pathways. We here provide a method for direct evaluation of aAB-induced pathomechanisms in the intact hippocampal network. Purified patient IgG fractions containing aAB to GAD65 together with fixable lipophilic styryl dyes (FMdyes) are stereotactically injected into the hilus and the dentate gyrus in anesthetized mice. Twenty-four hours after intrahippocampal injection, acute hippocampal slices are prepared and transferred to a patch-clamp recording setup equipped with a fluorescence light source. Intraneural incorporated FMdyes show correct injection site for patch-clamp recording. Whole-cell patch-clamp recordings are performed from granule cells in the dentate gyrus and extracellular stimulation is applied in the border area of the dentate gyrus-hilus region to stimulate GABAergic afferents arising from parvalbumin positive basket cells. GABA-A receptor mediated inhibitory postsynaptic currents (IPSC) and miniature IPSC are recorded after blocking glutamatergic transmission. This approach allows investigation of potential aAB-induced effects on GABA-A receptor signaling ex vivo in an intact neuronal network. This offers several advantages compared to experimental procedures used in previous studies by in vitro AB preincubation of primary neurons or slice preparations. Furthermore, this method requires only small amounts of patient material that are often limited in rare diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fneur.2015.00136DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4463933PMC
June 2015

Stiff person-syndrome IgG affects presynaptic GABAergic release mechanisms.

J Neural Transm (Vienna) 2015 Mar 3;122(3):357-62. Epub 2014 Jul 3.

Hans-Berger Department of Neurology, Jena University Hospital, Erlanger Allee, 07747, Jena, Germany.

The majority of patients with stiff person-syndrome (SPS) are characterized by autoantibodies to glutamate decarboxylase 65 (GAD65). In previous passive-transfer studies, SPS immunoglobulin G (IgG) induced SPS core symptoms. We here provide evidence that SPS-IgG causes a higher frequency of spontaneous vesicle fusions. Sustained GABAergic transmission and presynaptic GABAergic vesicle pool size remained unchanged. Since these findings cannot be attributed to anti-GAD65 autoantibodies alone, we propose that additional autoantibodies with so far undefined antigen specificity might affect presynaptic release mechanisms.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00702-014-1268-1DOI Listing
March 2015