Publications by authors named "Hervé Enslen"

24 Publications

  • Page 1 of 1

The RanBP2/RanGAP1-SUMO complex gates β-arrestin2 nuclear entry to regulate the Mdm2-p53 signaling axis.

Oncogene 2021 Mar 1;40(12):2243-2257. Epub 2021 Mar 1.

Inserm, U1016, Institut Cochin, Paris, France.

Mdm2 antagonizes the tumor suppressor p53. Targeting the Mdm2-p53 interaction represents an attractive approach for the treatment of cancers with functional p53. Investigating mechanisms underlying Mdm2-p53 regulation is therefore important. The scaffold protein β-arrestin2 (β-arr2) regulates tumor suppressor p53 by counteracting Mdm2. β-arr2 nucleocytoplasmic shuttling displaces Mdm2 from the nucleus to the cytoplasm resulting in enhanced p53 signaling. β-arr2 is constitutively exported from the nucleus, via a nuclear export signal, but mechanisms regulating its nuclear entry are not completely elucidated. β-arr2 can be SUMOylated, but no information is available on how SUMO may regulate β-arr2 nucleocytoplasmic shuttling. While we found β-arr2 SUMOylation to be dispensable for nuclear import, we identified a non-covalent interaction between SUMO and β-arr2, via a SUMO interaction motif (SIM), that is required for β-arr2 cytonuclear trafficking. This SIM promotes association of β-arr2 with the multimolecular RanBP2/RanGAP1-SUMO nucleocytoplasmic transport hub that resides on the cytoplasmic filaments of the nuclear pore complex. Depletion of RanBP2/RanGAP1-SUMO levels result in defective β-arr2 nuclear entry. Mutation of the SIM inhibits β-arr2 nuclear import, its ability to delocalize Mdm2 from the nucleus to the cytoplasm and enhanced p53 signaling in lung and breast tumor cell lines. Thus, a β-arr2 SIM nuclear entry checkpoint, coupled with active β-arr2 nuclear export, regulates its cytonuclear trafficking function to control the Mdm2-p53 signaling axis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41388-021-01704-wDOI Listing
March 2021

Mechanical GPCR Activation by Traction Forces Exerted on Receptor -Glycans.

ACS Pharmacol Transl Sci 2020 Apr 21;3(2):171-178. Epub 2020 Feb 21.

Université de Paris, Institut-Necker-Enfants-Malades, INSERM U1151, CNRS UMR 8253, 75015 Paris, France.

Cells are sensitive to chemical stimulation which is converted into intracellular biochemical signals by the activation of specific receptors. Mechanical stimulations can also induce biochemical responses via the activation of various mechano-sensors. Although principally appreciated for their chemosensory function, G-protein-coupled receptors (GPCRs) may participate in mechano-transduction. They are indirectly activated by the paracrine release of chemical compounds secreted in response to mechanical stimuli, but they might additionally behave as mechano-sensors that are directly stimulated by mechanical forces. Although several studies are consistent with this latter hypothesis, the molecular mechanisms of a potential direct mechanical activation of GPCRs have remained elusive until recently. In particular, investigating the activation of the catecholamine β-adrenergic receptor by a pathogen revealed that traction forces directly exerted on the N-terminus of the receptor via -glycan chains activate specific signaling pathways. These findings open new perspectives in GPCR biology and pharmacology since most GPCRs express -glycan chains in their N-terminus, which might similarly be involved in the interaction with cell-surface glycan-specific lectins in the context of cell-to-cell mechanical signaling.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsptsci.9b00106DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7155188PMC
April 2020

Beta-arrestins operate an on/off control switch for focal adhesion kinase activity.

Cell Mol Life Sci 2020 Dec 10;77(24):5259-5279. Epub 2020 Feb 10.

Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France.

Focal adhesion kinase (FAK) regulates key biological processes downstream of G protein-coupled receptors (GPCRs) in normal and cancer cells, but the modes of kinase activation by these receptors remain unclear. We report that after GPCR stimulation, FAK activation is controlled by a sequence of events depending on the scaffolding proteins β-arrestins and G proteins. Depletion of β-arrestins results in a marked increase in FAK autophosphorylation and focal adhesion number. We demonstrate that β-arrestins interact directly with FAK and inhibit its autophosphorylation in resting cells. Both FAK-β-arrestin interaction and FAK inhibition require the FERM domain of FAK. Following the stimulation of the angiotensin receptor ATR and subsequent translocation of the FAK-β-arrestin complex to the plasma membrane, β-arrestin interaction with the adaptor AP-2 releases inactive FAK from the inhibitory complex, allowing its activation by receptor-stimulated G proteins and activation of downstream FAK effectors. Release and activation of FAK in response to angiotensin are prevented by an AP-2-binding deficient β-arrestin and by a specific inhibitor of β-arrestin/AP-2 interaction; this inhibitor also prevents FAK activation in response to vasopressin. This previously unrecognized mechanism of FAK regulation involving a dual role of β-arrestins, which inhibit FAK in resting cells while driving its activation at the plasma membrane by GPCR-stimulated G proteins, opens new potential therapeutic perspectives in cancers with up-regulated FAK.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00018-020-03471-5DOI Listing
December 2020

Methods to Characterize Protein Interactions with β-Arrestin In Cellulo.

Methods Mol Biol 2019 ;1957:139-158

Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.

β-Arrestins 1 and 2 (β-arr1 and β-arr2) are ubiquitous proteins with common and distinct functions. They were initially identified as proteins recruited to stimulated G protein-coupled receptors (GPCRs), regulating their desensitization and internalization. The discovery that β-arrs could also interact with more than 400 non-GPCR protein partners brought to light their central roles as multifunctional scaffold proteins regulating multiple signalling pathways from the plasma membrane to the nucleus, downstream of GPCRs or independently from these receptors. Through the regulation of the activities and subcellular localization of their binding partners, β-arrs control various cell processes such as proliferation, cytoskeletal rearrangement, cell motility, and apoptosis. Thus, the identification of β-arrs binding partners and the characterization of their mode of interaction in cells are central to the understanding of their function. Here we provide methods to explore the molecular interaction of β-arrs with other proteins in cellulo.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-9158-7_9DOI Listing
July 2019

Receptor sequestration in response to β-arrestin-2 phosphorylation by ERK1/2 governs steady-state levels of GPCR cell-surface expression.

Proc Natl Acad Sci U S A 2015 Sep 31;112(37):E5160-8. Epub 2015 Aug 31.

Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3C 1J4, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C IJ4, Canada;

MAPKs are activated in response to G protein-coupled receptor (GPCR) stimulation and play essential roles in regulating cellular processes downstream of these receptors. However, very little is known about the reciprocal effect of MAPK activation on GPCRs. To investigate possible crosstalk between the MAPK and GPCRs, we assessed the effect of ERK1/2 on the activity of several GPCR family members. We found that ERK1/2 activation leads to a reduction in the steady-state cell-surface expression of many GPCRs because of their intracellular sequestration. This subcellular redistribution resulted in a global dampening of cell responsiveness, as illustrated by reduced ligand-mediated G-protein activation and second-messenger generation as well as blunted GPCR kinases and β-arrestin recruitment. This ERK1/2-mediated regulatory process was observed for GPCRs that can interact with β-arrestins, such as type-2 vasopressin, type-1 angiotensin, and CXC type-4 chemokine receptors, but not for the prostaglandin F receptor that cannot interact with β-arrestin, implicating this scaffolding protein in the receptor's subcellular redistribution. Complementation experiments in mouse embryonic fibroblasts lacking β-arrestins combined with in vitro kinase assays revealed that β-arrestin-2 phosphorylation on Ser14 and Thr276 is essential for the ERK1/2-promoted GPCR sequestration. This previously unidentified regulatory mechanism was observed after constitutive activation as well as after receptor tyrosine kinase- or GPCR-mediated activation of ERK1/2, suggesting that it is a central node in the tonic regulation of cell responsiveness to GPCR stimulation, acting both as an effector and a negative regulator.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1508836112DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4577186PMC
September 2015

A biosensor to monitor dynamic regulation and function of tumour suppressor PTEN in living cells.

Nat Commun 2014 Jul 16;5:4431. Epub 2014 Jul 16.

1] Department of Endocrinology, Metabolism and Diabetes, Inserm, U1016, Institut Cochin, 27 rue du Faubourg St Jaques, Paris 75014, France [2] CNRS, UMR8104, Paris 75014, France [3] University Paris Descartes, Sorbonne Paris Cité, Paris 75014, France.

Tumour suppressor PTEN is a phosphatase that negatively regulates the PI3K/AKT pathway. The ability to directly monitor PTEN conformation and function in a rapid, sensitive manner is a key step towards developing anti-cancer drugs aimed at enhancing or restoring PTEN-dependent pathways. Here we developed an intramolecular bioluminescence resonance energy transfer (BRET)-based biosensor, capable of detecting signal-dependent PTEN conformational changes in live cells. The biosensor retains intrinsic properties of PTEN, enabling structure-function and kinetic analyses. BRET shifts, indicating conformational change, were detected following mutations that disrupt intramolecular PTEN interactions, promoting plasma membrane targeting and also following physiological PTEN activation. Using the biosensor as a reporter, we uncovered PTEN activation by several G protein-coupled receptors, previously unknown as PTEN regulators. Trastuzumab, used to treat ERBB2-overexpressing breast cancers also elicited activation-associated PTEN conformational rearrangement. We propose the biosensor can be used to identify pathways regulating PTEN or molecules that enhance its anti-tumour activity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncomms5431DOI Listing
July 2014

Arrestins as regulatory hubs in cancer signalling pathways.

Handb Exp Pharmacol 2014 ;219:405-25

Inserm, U1016, Institut Cochin, 27, Rue du Faubourg Saint Jacques, 75014, Paris, France,

Non-visual arrestins were initially appreciated for the roles they play in the negative regulation of G protein-coupled receptors through the processes of desensitisation and endocytosis. The arrestins are also now known as protein scaffolding platforms that act downstream of multiple types of receptors, ensuring relevant transmission of information for an appropriate cellular response. They function as regulatory hubs in several important signalling pathways that are often dysregulated in human cancers. Interestingly, several recent studies have documented changes in expression and localisation of arrestins that occur during cancer progression and that correlate with clinical outcome. Here, we discuss these advances and how changes in expression/localisation may affect functional outputs of arrestins in cancer biology.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-642-41199-1_21DOI Listing
April 2014

Distinct functional outputs of PTEN signalling are controlled by dynamic association with β-arrestins.

EMBO J 2011 Jun 3;30(13):2557-68. Epub 2011 Jun 3.

INSERM, U1016, Institut Cochin, Paris, France.

The tumour suppressor PTEN (phosphatase and tensin deleted on chromosome 10) regulates major cellular functions via lipid phosphatase-dependent and -independent mechanisms. Despite its fundamental pathophysiological importance, how PTEN's cellular activity is regulated has only been partially elucidated. We report that the scaffolding proteins β-arrestins (β-arrs) are important regulators of PTEN. Downstream of receptor-activated RhoA/ROCK signalling, β-arrs activate the lipid phosphatase activity of PTEN to negatively regulate Akt and cell proliferation. In contrast, following wound-induced RhoA activation, β-arrs inhibit the lipid phosphatase-independent anti-migratory effects of PTEN. β-arrs can thus differentially control distinct functional outputs of PTEN important for cell proliferation and migration.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/emboj.2011.178DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3155309PMC
June 2011

Meningococcus Hijacks a β2-adrenoceptor/β-Arrestin pathway to cross brain microvasculature endothelium.

Cell 2010 Dec;143(7):1149-60

Université Paris Descartes, Faculté de Médecine, 75006 Paris, France.

Following pilus-mediated adhesion to human brain endothelial cells, meningococcus (N. meningitidis), the bacterium causing cerebrospinal meningitis, initiates signaling cascades, which eventually result in the opening of intercellular junctions, allowing meningeal colonization. The signaling receptor activated by the pathogen remained unknown. We report that N. meningitidis specifically stimulates a biased β2-adrenoceptor/β-arrestin signaling pathway in endothelial cells, which ultimately traps β-arrestin-interacting partners, such as the Src tyrosine kinase and junctional proteins, under bacterial colonies. Cytoskeletal reorganization mediated by β-arrestin-activated Src stabilizes bacterial adhesion to endothelial cells, whereas β-arrestin-dependent delocalization of junctional proteins results in anatomical gaps used by bacteria to penetrate into tissues. Activation of β-adrenoceptor endocytosis with specific agonists prevents signaling events downstream of N. meningitidis adhesion and inhibits bacterial crossing of the endothelial barrier. The identification of the mechanism used for hijacking host cell signaling machineries opens perspectives for treatment and prevention of meningococcal infection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cell.2010.11.035DOI Listing
December 2010

Distinct roles of c-Jun N-terminal kinase isoforms in neurite initiation and elongation during axonal regeneration.

J Neurosci 2010 Jun;30(23):7804-16

Inserm Unité 952, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7224, Paris, France.

c-Jun N-terminal kinases (JNKs) (comprising JNK1-3 isoforms) are members of the MAPK (mitogen-activated protein kinase) family, activated in response to various stimuli including growth factors and inflammatory cytokines. Their activation is facilitated by scaffold proteins, notably JNK-interacting protein-1 (JIP1). Originally considered to be mediators of neuronal degeneration in response to stress and injury, recent studies support a role of JNKs in early stages of neurite outgrowth, including adult axonal regeneration. However, the function of individual JNK isoforms, and their potential effector molecules, remained unknown. Here, we analyzed the role of JNK signaling during axonal regeneration from adult mouse dorsal root ganglion (DRG) neurons, combining pharmacological JNK inhibition and mice deficient for each JNK isoform and for JIP1. We demonstrate that neuritogenesis is delayed by lack of JNK2 and JNK3, but not JNK1. JNK signaling is further required for sustained neurite elongation, as pharmacological JNK inhibition resulted in massive neurite retraction. This function relies on JNK1 and JNK2. Neurite regeneration of jip1(-/-) DRG neurons is affected at both initiation and extension stages. Interestingly, activated JNKs (phospho-JNKs), as well as JIP1, are also present in the cytoplasm of sprouting or regenerating axons, suggesting a local action on cytoskeleton proteins. Indeed, we have shown that JNK1 and JNK2 regulate the phosphorylation state of microtubule-associated protein MAP1B, whose role in axonal regeneration was previously characterized. Moreover, lack of MAP1B prevents neurite retraction induced by JNK inhibition. Thus, signaling by individual JNKs is differentially implicated in the reorganization of the cytoskeleton, and neurite regeneration.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1523/JNEUROSCI.0372-10.2010DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6632683PMC
June 2010

Autophosphorylation-independent and -dependent functions of focal adhesion kinase during development.

J Biol Chem 2009 Dec 23;284(50):34769-76. Epub 2009 Sep 23.

Inserm U839, 17 Rue du Fer-à-Moulin, 75005 Paris, France.

Focal adhesion kinase (FAK) regulates numerous cellular functions and is critical for processes ranging from embryo development to cancer progression. Although autophosphorylation on Tyr-397 appears required for FAK functions in vitro, its role in vivo has not been established. We addressed this question using a mutant mouse (fakDelta) deleted of exon 15, which encodes Tyr-397. The resulting mutant protein FAKDelta is an active kinase expressed at normal levels. Our results demonstrate that the requirement for FAK autophosphorylation varies during development. FAK(Delta/Delta) embryos developed normally up to embryonic day (E) 12.5, contrasting with the lethality at E8.5 of FAK-null embryos. Thus, autophosphorylation on Tyr-397 is not required for FAK to achieve its functions until late mid-gestation. However, FAK(Delta/Delta) embryos displayed hemorrhages, edema, delayed artery formation, vascular remodeling defects, multiple organ abnormalities, and overall developmental retardation at E13.5-14.5, and died thereafter demonstrating that FAK autophosphorylation is also necessary for normal development. Fibroblasts derived from mutant embryos had a normal stellate morphology and expression of focal adhesion proteins, Src family members, p53, and Pyk2. In contrast, in FAK(Delta/Delta) fibroblasts and endothelial cells, spreading and lamellipodia formation were altered with an increased size and number of focal adhesions, enriched in FAKDelta. FAK mutation also decreased fibroblast proliferation. These results show that the physiological functions of FAK in vivo are achieved through both autophosphorylation-independent and autophosphorylation-dependent mechanisms.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M109.067280DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2787339PMC
December 2009

Role of plasminogen activation in neuronal organization and survival.

Mol Cell Neurosci 2009 Dec 14;42(4):288-95. Epub 2009 Aug 14.

Inserm U698, Université Paris Diderot-Paris 7, 75018 Paris, France.

We characterized the interactions between plasminogen and neurons and investigated the associated effects on extracellular matrix proteolysis, cell morphology, adhesion, signaling and survival. Upon binding of plasminogen to neurons, the plasmin formed by constitutively expressed tissue plasminogen activator (tPA) degrades extracellular matrix proteins, leading to retraction of the neuron monolayer that detaches from the matrix. This sequence of events required both interaction of plasminogen with carboxy-terminal lysine residues and the proteolytic activity of plasmin. Surprisingly, 24h after plasminogen addition, plasmin-detached neurons survived and remained associated in clusters maintaining focal adhesion kinase phosphorylation contrasting with other adherent cell types fully dissociated by plasmin. However, long-term incubation (72 h) with plasminogen was associated with an increased rate of apoptosis, suggesting that prolonged exposure to plasmin may cause neurotoxicity. Regulation of neuronal organization and survival by plasminogen may be of pathophysiological relevance, as plasminogen is expressed in the brain and/or extravasate during vascular accidents or inflammatory processes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mcn.2009.08.001DOI Listing
December 2009

A phosphatase cascade by which rewarding stimuli control nucleosomal response.

Nature 2008 Jun 21;453(7197):879-84. Epub 2008 May 21.

Inserm, UMR-S 839, 75005 Paris, France.

Dopamine orchestrates motor behaviour and reward-driven learning. Perturbations of dopamine signalling have been implicated in several neurological and psychiatric disorders, and in drug addiction. The actions of dopamine are mediated in part by the regulation of gene expression in the striatum, through mechanisms that are not fully understood. Here we show that drugs of abuse, as well as food reinforcement learning, promote the nuclear accumulation of 32-kDa dopamine-regulated and cyclic-AMP-regulated phosphoprotein (DARPP-32). This accumulation is mediated through a signalling cascade involving dopamine D1 receptors, cAMP-dependent activation of protein phosphatase-2A, dephosphorylation of DARPP-32 at Ser 97 and inhibition of its nuclear export. The nuclear accumulation of DARPP-32, a potent inhibitor of protein phosphatase-1, increases the phosphorylation of histone H3, an important component of nucleosomal response. Mutation of Ser 97 profoundly alters behavioural effects of drugs of abuse and decreases motivation for food, underlining the functional importance of this signalling cascade.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature06994DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2796210PMC
June 2008

Trio mediates netrin-1-induced Rac1 activation in axon outgrowth and guidance.

Mol Cell Biol 2008 Apr 22;28(7):2314-23. Epub 2008 Jan 22.

CRBM-CNRS, UMR5237, 1919 Route de Mende, 34293 Montpellier Cédex 05, France.

The chemotropic guidance cue netrin-1 promotes neurite outgrowth through its receptor Deleted in Colorectal Cancer (DCC) via activation of Rac1. The guanine nucleotide exchange factor (GEF) linking netrin-1/DCC to Rac1 activation has not yet been identified. Here, we show that the RhoGEF Trio mediates Rac1 activation in netrin-1 signaling. We found that Trio interacts with the netrin-1 receptor DCC in mouse embryonic brains and that netrin-1-induced Rac1 activation in brain is impaired in the absence of Trio. Trio(-/-) cortical neurons fail to extend neurites in response to netrin-1, while they are able to respond to glutamate. Accordingly, netrin-1-induced commissural axon outgrowth is reduced in Trio(-/-) spinal cord explants, and the guidance of commissural axons toward the floor plate is affected by the absence of Trio. The anterior commissure is absent in Trio-null embryos, and netrin-1/DCC-dependent axonal projections that form the internal capsule and the corpus callosum are defective in the mutants. Taken together, these findings establish Trio as a GEF that mediates netrin-1 signaling in axon outgrowth and guidance through its ability to activate Rac1.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/MCB.00998-07DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2268419PMC
April 2008

Junctional expression of the prion protein PrPC by brain endothelial cells: a role in trans-endothelial migration of human monocytes.

J Cell Sci 2006 Nov 24;119(Pt 22):4634-43. Epub 2006 Oct 24.

Institut Cochin, Département Biologie Cellulaire, Paris, France.

The conversion of prion protein (PrP(C)) to its protease-resistant isoform is involved in the pathogenesis of prion diseases. Although PrP(C) is highly expressed in neurons and other cell types, its physiological function still remains elusive. Here, we describe how we evaluated its expression, subcellular localization and putative function in brain endothelial cells, which constitute the blood-brain barrier. We detected its expression in microvascular endothelium in mouse brain sections and at intercellular junctions of freshly isolated brain microvessels and cultured brain endothelial cells of mouse, rat and human origin. PrP(C) co-localized with the adhesion molecule platelet endothelial cell adhesion molecule-1 (PECAM-1); moreover, both PrP(C) and PECAM-1 were present in raft membrane microdomains. Using mixed cultures of wild-type and PrP(C)-deficient mouse brain endothelial cells, we observed that PrP(C) accumulation at cell-cell contacts was probably dependent on homophilic interactions between adjacent cells. Moreover, we report that anti-PrP(C) antibodies unexpectedly inhibited transmigration of U937 human monocytic cells as well as freshly isolated monocytes through human brain endothelial cells. Significant inhibition was observed with various anti-PrP(C) antibodies or blocking anti-PECAM-1 antibodies as control. Our results strongly support the conclusion that PrP(C) is expressed by brain endothelium as a junctional protein that is involved in the trans-endothelial migration of monocytes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.03222DOI Listing
November 2006

Organization and post-transcriptional processing of focal adhesion kinase gene.

BMC Genomics 2006 Aug 4;7:198. Epub 2006 Aug 4.

Unité Mixte de Recherche-Santé (UMR-S) 536, Institut National de la Santé et de la Recherche Médicale (INSERM) F-75005, Paris, France.

Background: Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase critical for processes ranging from embryo development to cancer progression. Although isoforms with specific molecular and functional properties have been characterized in rodents and chicken, the organization of FAK gene throughout phylogeny and its potential to generate multiple isoforms are not well understood. Here, we study the phylogeny of FAK, the organization of its gene, and its post-transcriptional processing in rodents and human.

Results: A single orthologue of FAK and the related PYK2 was found in non-vertebrate species. Gene duplication probably occurred in deuterostomes after the echinoderma embranchment, leading to the evolution of PYK2 with distinct properties. The amino acid sequence of FAK and PYK2 is conserved in their functional domains but not in their linker regions, with the absence of autophosphorylation site in C. elegans. Comparison of mouse and human FAK genes revealed the existence of multiple combinations of conserved and non-conserved 5'-untranslated exons in FAK transcripts suggesting a complex regulation of their expression. Four alternatively spliced coding exons (13, 14, 16, and 31), previously described in rodents, are highly conserved in vertebrates. Cis-regulatory elements known to regulate alternative splicing were found in conserved alternative exons of FAK or in the flanking introns. In contrast, other reported human variant exons were restricted to Homo sapiens, and, in some cases, other primates. Several of these non-conserved exons may correspond to transposable elements. The inclusion of conserved alternative exons was examined by RT-PCR in mouse and human brain during development. Inclusion of exons 14 and 16 peaked at the end of embryonic life, whereas inclusion of exon 13 increased steadily until adulthood. Study of various tissues showed that inclusion of these exons also occurred, independently from each other, in a tissue-specific fashion.

Conclusion: The alternative coding exons 13, 14, 16, and 31 are highly conserved in vertebrates and their inclusion in mRNA is tightly but independently regulated. These exons may therefore be crucial for FAK function in specific tissues or during development. Conversely pathological disturbance of the expression of FAK and of its isoforms could lead to abnormal cellular regulation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1471-2164-7-198DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1570463PMC
August 2006

Two separate motifs cooperate to target stathmin-related proteins to the Golgi complex.

J Cell Sci 2005 May 3;118(Pt 10):2313-23. Epub 2005 May 3.

INSERM, U706, Neurosignalisation Moléculaire et Cellulaire, Institut du Fer à Moulin, 17 rue du Fer à Moulin, and Université Pierre et Marie Curie (UPMC), 4 place Jussieu, Paris, 75005 France.

The appropriate targeting of membrane-associated proteins involves a diversity of motifs including post-translational modifications and specific protein sequences. Phosphoproteins of the stathmin family are important regulators of microtubule dynamics, in particular in the developing and mature nervous system. Whereas stathmin is cytosolic, SCG10, SCLIP and the splice variants RB3/RB3'/RB3'' are associated with Golgi and vesicular membranes, through their palmitoylated N-terminal A domains. In order to identify essential motifs involved in this specific targeting, we examined the subcellular distribution of various subdomains derived from domain A of SCG10 fused with GFP. We show that the Golgi localization of SCG10 results from the cooperation of two motifs: a membrane-anchoring palmitoylation motif and a newly identified Golgi-specifying sequence. The latter displayed no targeting activity by itself, but retained a Golgi-specifying activity when associated with another membrane-anchoring palmitoylation motif derived from the protein GAP-43. We further identified critical residues for the specific Golgi targeting of domain A. Altogether, our results give new insight into the regulation of the subcellular localization of stathmin family proteins, an important feature of their physiological functions in differentiating and mature neural cells. More generally we provide new information on essential mechanisms of functional protein subcellular targeting.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.02349DOI Listing
May 2005

Regulation of a protein phosphatase cascade allows convergent dopamine and glutamate signals to activate ERK in the striatum.

Proc Natl Acad Sci U S A 2005 Jan 17;102(2):491-6. Epub 2004 Dec 17.

Institut National de la Santé et de la Recherche Médicale and Université Pierre et Marie Curie U536, "Signal Transduction and Plasticity in the Nervous System," Institut du Fer à Moulin, 17 Rue du Fer à Moulin, 75005 Paris, France.

Many drugs of abuse exert their addictive effects by increasing extracellular dopamine in the nucleus accumbens, where they likely alter the plasticity of corticostriatal glutamatergic transmission. This mechanism implies key molecular alterations in neurons in which both dopamine and glutamate inputs are activated. Extracellular signal-regulated kinase (ERK), an enzyme important for long-term synaptic plasticity, is a good candidate for playing such a role. Here, we show in mouse that d-amphetamine activates ERK in a subset of medium-size spiny neurons of the dorsal striatum and nucleus accumbens, through the combined action of glutamate NMDA and D1-dopamine receptors. Activation of ERK by d-amphetamine or by widely abused drugs, including cocaine, nicotine, morphine, and Delta(9)-tetrahydrocannabinol was absent in mice lacking dopamine- and cAMP-regulated phosphoprotein of M(r) 32,000 (DARPP-32). The effects of d-amphetamine or cocaine on ERK activation in the striatum, but not in the prefrontal cortex, were prevented by point mutation of Thr-34, a DARPP-32 residue specifically involved in protein phosphatase-1 inhibition. Regulation by DARPP-32 occurred both upstream of ERK and at the level of striatal-enriched tyrosine phosphatase (STEP). Blockade of the ERK pathway or mutation of DARPP-32 altered locomotor sensitization induced by a single injection of psychostimulants, demonstrating the functional relevance of this regulation. Thus, activation of ERK, by a multilevel protein phosphatase-controlled mechanism, functions as a detector of coincidence of dopamine and glutamate signals converging on medium-size striatal neurons and is critical for long-lasting effects of drugs of abuse.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.0408305102DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC544317PMC
January 2005

Depolarization activates ERK and proline-rich tyrosine kinase 2 (PYK2) independently in different cellular compartments in hippocampal slices.

J Biol Chem 2005 Jan 10;280(1):660-8. Epub 2004 Nov 10.

Signal Transduction and Plasticity in the Nervous System Unit, INSERM/Université Pierre et Marie Curie U536, Institut du Fer à Moulin, 75005 Paris, France.

In the hippocampus, extracellular signal-regulated kinase (ERK) and the non-receptor protein proline-rich tyrosine kinase 2 (PYK2) are activated by depolarization and involved in synaptic plasticity. Both are also activated under pathological conditions following ischemia, convulsions, or electroconvulsive shock. Although in non-neuronal cells PYK2 activates ERK through the recruitment of Src-family kinases (SFKs), the link between these pathways in the hippocampus is not known. We addressed this question using K(+)-depolarized rat hippocampal slices. Depolarization increased the phosphorylation of PYK2, SFKs, and ERK. These effects resulted from Ca(2+) influx through voltage-gated Ca(2+) channels and were diminished by GF109203X, a protein kinase C inhibitor. Inhibition of SFKs with PP2 decreased PYK2 tyrosine phosphorylation dramatically, but not its autophosphorylation on Tyr-402. Moreover, PYK2 autophosphorylation and total tyrosine phosphorylation were profoundly altered in fyn-/- mice, revealing an important functional relationship between Fyn and PYK2 in the hippocampus. In contrast, ERK activation was unaltered by PP2, Fyn knock-out, or LY294002, a phosphatidyl-inositol-3-kinase inhibitor. ERK activation was prevented by MEK inhibitors that had no effect on PYK2. Immunofluorescence of hippocampal slices showed that PYK2 and ERK were activated in distinct cellular compartments in somatodendritic regions and nerve terminals, respectively, with virtually no overlap. Activation of ERK was critical for the rephosphorylation of a synaptic vesicle protein, synapsin I, following depolarization, underlining its functional importance in nerve terminals. Thus, in hippocampal slices, in contrast to cell lines, depolarization-induced activation of non-receptor tyrosine kinases and ERK occurs independently in distinct cellular compartments in which they appear to have different functional roles.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M411312200DOI Listing
January 2005

Heterogeneity and regulation of cellular prion protein glycoforms in neuronal cell lines.

Eur J Neurosci 2003 Aug;18(3):542-8

Signalisation et Différenciation Cellulaires dans les Systèmes Nerveux et Musculaire, U440 INSERM/UPMC, Institut du Fer à Moulin, 17 rue du Fer à Moulin, 75005 Paris, France.

The normal cellular prion protein is a small sialoglycoprotein highly expressed in neurons, the physiological function of which is largely unknown. Due to extensive N-glycosylations with a wide range of oligosaccharides, the prion protein displays a complex glycosylation pattern that could be of relevance for its function. The cellular prion protein patterns in adult mouse and rat brain, and in neuronal cell lines, appeared highly heterogeneous, as distinct levels and glycoforms of cellular prion protein were revealed by immunoblotting of corresponding samples. Amongst neuronal cell lines, mouse N2a neuroblastoma cells expressed low levels of endogenous prion protein. Mouse hypothalamic GT1-7 cells and rat pheochromocytoma PC-12 cells expressed highly glycosylated forms of cellular prion protein that were found neither in adult mouse and rat brain, nor in mouse brain during development. In contrast, rat B104 neuroblastoma cells abundantly expressed N-glycosylated cellular prion protein forms similar to those observed in mouse and rat brain. In all these cell lines, the prion protein was normally exported to and expressed at the outer cell membrane. Our results suggest that B104 cells may represent an appropriate cell model to investigate the physiological role of cellular prion protein in further detail as they highly express the normal 'brain-like' cellular prion protein glycoforms. In addition, we observed that the various prion glycoforms in B104 cells were tightly regulated both as a function of cell density and during neuronal differentiation, implying a potential role of cellular prion protein in cell-cell interactions and differentiation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1460-9568.2003.02777.xDOI Listing
August 2003

Regulation of extracellular signal-regulated kinase by cannabinoids in hippocampus.

J Neurosci 2003 Mar;23(6):2371-82

Institut National de la Santé et de la Recherche Médicale/Université Pierre et Marie Curie U536, Institut du Fer à Moulin, Paris, France 75005.

Endocannabinoids form a novel class of intercellular messengers, the functions of which include retrograde signaling in the brain and mediation or modulation of several types of synaptic plasticity. Yet, the signaling mechanisms and long-term effects of the stimulation of CB1 cannabinoid receptors (CB1-R) are poorly understood. We show that anandamide, 2-arachidonoyl-glycerol, and Delta9-tetrahydrocannabinol (THC) activated extracellular signal-regulated kinase (ERK) in hippocampal slices. In living mice, THC activated ERK in hippocampal neurons and induced its accumulation in the nuclei of pyramidal cells in CA1 and CA3. Both effects were attributable to stimulation of CB1-R and activation of MAP kinase/ERK kinase (MEK). In hippocampal slices, the stimulation of ERK was independent of phosphatidyl-inositol-3-kinase but was regulated by cAMP. The endocannabinoid-induced stimulation of ERK was lost in Fyn knock-out mice, in slices and in vivo, although it was insensitive to inhibitors of Src-family tyrosine kinases in vitro, suggesting a noncatalytic role of Fyn. Finally, the effects of cannabinoids on ERK activation were dependent on the activity of glutamate NMDA receptors in vivo, but not in hippocampal slices, indicating the existence of several pathways linking CB1-R to the ERK cascade. In vivo THC induced the expression of immediate-early genes products (c-Fos protein, Zif268, and BDNF mRNAs), and this induction was prevented by an inhibitor of MEK. The strong potential of cannabinoids for inducing long-term alterations in hippocampal neurons through the activation of the ERK pathway may be important for the physiological control of synaptic plasticity and for the general effects of THC in the context of drug abuse.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6742049PMC
March 2003

Differential nucleocytoplasmic shuttling of beta-arrestins. Characterization of a leucine-rich nuclear export signal in beta-arrestin2.

J Biol Chem 2002 Oct 6;277(40):37693-701. Epub 2002 Aug 6.

Department of Cell Biology, Institut Cochin, Pavillon Gustave Roussy, 75679 Paris CEDEX 14, France.

beta-arrestins (betaarrs) are two highly homologous proteins that uncouple G protein-coupled receptors from their cognate G proteins, serve as adaptor molecules linking G protein-coupled receptors to clathrin-coat components (AP-2 complex and clathrin), and act as scaffolding proteins for ERK1/2 and JNK3 cascades. A striking difference between the two betaarrs (betaarr1 and betaarr2) is that betaarr1 is evenly distributed throughout the cell, whereas betaarr2 shows an apparent cytoplasmic localization at steady state. Here, we investigate the molecular determinants underlying this differential distribution. betaarr2 is constitutively excluded from the nucleus by a leptomycin B-sensitive pathway because of the presence of a classical leucine-rich nuclear export signal in its C terminus (L395/L397) that is absent in betaarr1. In addition, using a nuclear import assay in yeast we showed that betaarr2 is actively imported into the nucleus, suggesting that betaarr2 undergoes constitutive nucleocytoplasmic shuttling. In cells expressing betaarr2, JNK3 is mostly cytosolic. A point mutation of the nuclear export signal (L395A) in betaarr2, which was sufficient to redistribute betaarr2 from the cytosol to the nucleus, also caused the nuclear relocalization of JNK3. These data indicate that the nucleocytoplasmic shuttling of betaarr2 controls the subcellular distribution of JNK3.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M207552200DOI Listing
October 2002

Differential involvement of p38 mitogen-activated protein kinase kinases MKK3 and MKK6 in T-cell apoptosis.

EMBO Rep 2002 Aug 15;3(8):785-91. Epub 2002 Jul 15.

Section of Immunobiology, Yale University School of Medicine, New Haven CT 06520, USA.

The p38 mitogen-activated protein kinase (p38MAPK) is activated in response to various stimuli, including cellular stress, inflammatory cytokines and cell surface receptors. The activation of p38MAPK is predominantly mediated by the two upstream MAPK kinases MKK3 and MKK6. To study the role of the p38MAPK pathway in vivo, we generated Mkk6-/- mice. We examined whether T-cell apoptosis is affected in these mice and in our previously reported Mkk3-/- mice. Strikingly, in vivo deletion of double positive thymocytes in Mkk6-/- mice was impaired, whereas Mkk3-/- mice showed no apparent abnormality. Conversely, CD4(+)T cells from Mkk3-/- but not from Mkk6-/- mice were resistant to activation-induced cell death and cytokine-withdrawal-induced apoptosis. In peripheral CD4(+)T cells, MKK3 is induced upon stimulation, whereas MKK6 is downregulated. These results suggest a novel mechanism regulating T-cell apoptosis differentially through the p38MAPK pathway by MKK3 and MKK6.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/embo-reports/kvf153DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1084207PMC
August 2002

Phosphorylation of NFATc4 by p38 mitogen-activated protein kinases.

Mol Cell Biol 2002 Jun;22(11):3892-904

Department of Molecular Pharmacology, Jack and Pearl Resnick Campus, Albert Einstein College of Medicine, Bronx, New York 10461, USA.

Nuclear factor of activated T cells (NFAT) is implicated in multiple biological processes, including cytokine gene expression, cardiac hypertrophy, and adipocyte differentiation. A conserved NFAT homology domain is identified in all NFAT members. Dephosphorylation of the NFAT homology region is critical for NFAT nuclear translocation and transcriptional activation. Here we demonstrate that NFATc4 is phosphorylated by p38 mitogen-activated protein (MAP) kinase but not by JNK. The p38 MAP kinase phosphorylates multiple residues, including Ser(168) and Ser(170), in the NFAT homology domain of NFATc4. Replacement of Ser(168,170) with Ala promotes nuclear localization of NFATc4 and increases NFAT-mediated transcription activity. Stable expression of Ala(168,170) NFATc4, but not of wild-type NFATc4, in NIH 3T3 cells promotes adipocyte formation under differentiation conditions. Molecular analysis indicates that peroxisome proliferator-activated receptor gamma 2 (PPAR gamma 2) is a target of NFAT. Two distinct NFAT binding elements are located in the PPAR gamma 2 gene promoter. Stable expression of Ala(168,170) NFATc4, but not of wild-type NFATc4, increases the expression of PPAR gamma, which contributes in part to increased adipocyte formation. Thus, NFAT regulates PPAR gamma gene expression and has a direct role in adipocyte differentiation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC133816PMC
http://dx.doi.org/10.1128/mcb.22.11.3892-3904.2002DOI Listing
June 2002