Publications by authors named "Hermann Kupsch"

2 Publications

  • Page 1 of 1

Radioiodination of humic substances via azocoupling with 3-[125I] iodoaniline.

Environ Sci Technol 2008 Jun;42(11):4083-7

Institute of Interdisciplinary Isotope Research, Permoserstrasse 15, 04318 Leipzig, Germany.

A new method is described for radiolabeling humic substances (HS) with iodine radioisotopes. The method radiolabels the electron-rich aromatic moieties of HS with the 3-[125I]iodobenzenediazonium ion via azocoupling. The method uses four steps: (i) 3-aminobenzenetrimethylstannane is synthesized and isolated by using a silica gel column, (ii) 3-[125I]iodoaniline is synthesized and isolated by HPLC, with radiochemical yields of up to 60%, (iii) 3-[125I]iodobenzenediazonium chloride is synthesized, and the reaction mixture from this step is used in step iv to radioiodinate HS with radiochemical yields of up to 95% (with reference to 3-[125I]iodoaniline). The advantage of this method is that it is selective radiolabeling, placing the radiolabel in a specific site (the 3-position of the phenyl ring) within HS molecules, which minimizes unwanted secondary chemical interactions. Investigations of the stability of the radiolabel and the effect of photoreductive dehalogenation showed that there was a negligible release of 125I. The production of radiolabeled HS using this method allows the sensitive detection of HS in laboratory and field studies. In addition, the method offers the possibility of using different iodine radioisotopes simultaneously in investigations using HS.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
June 2008

Joint influence of surfactants and humic matter on PAH solubility. Are mixed micelles formed?

Chemosphere 2008 Feb 5;70(11):1979-86. Epub 2007 Nov 5.

Institut für Interdisziplinäre Isotopenforschung, Permoserstrasse 15, 04318 Leipzig, Germany.

Mobilization of polycyclic aromatic hydrocarbons (PAH) by surfactants, present at contaminated sites or deliberately introduced for remediation purposes, is inevitably associated with the influence of humic substances, which are ubiquitous in natural systems. Therefore, the solubilizing effects of anthropogenic and natural amphiphiles must be considered in their combined action since synergistic or antagonistic effects may be expected, for instance, as a consequence of mixed micellization. In this paper, solubilization of (14)C-labeled pyrene in single-component and mixed solutions of surfactants and humic acid (coal-derived) was investigated up to the micellar concentration range. At low concentrations, antagonistic effects were observed for systems with cationic as well as anionic surfactants. Solubility enhancements in the presence of humic acid were canceled on addition of a cationic surfactant (DTAB) since charge compensation at humic colloids entailed precipitation. Solubility was also found to be decreased in the presence of an anionic surfactant (SDS), which was attributed to a competitive effect in respect of pyrene-humic interaction. This explanation is based on octanol-water partitioning experiments with radiolabeled humic acid, yielding evidence of different interaction modes between humic colloids and cationic/anionic surfactants. At higher concentrations, the effects of humic acid and SDS were found to be additive. Thus, a formation of mixed micelles is very unlikely, which was confirmed by size exclusion chromatography of mixed systems. It can be concluded that remediation measures on the basis of micellar solubilization are not significantly affected by the presence of natural amphiphilic compounds.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
February 2008