Publications by authors named "Henry Houlden"

558 Publications

DYT6 mutated THAP1 is a cell type dependent regulator of the SP1 family.

Brain 2022 Jan 7. Epub 2022 Jan 7.

Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany.

DYT6 dystonia is caused by mutations in the transcription factor THAP1. THAP1 knock-out or knock-in mouse models revealed complex gene expression changes which are potentially responsible for the pathogenesis of DYT6 dystonia. However, how THAP1 mutations lead to these gene expression alterations and whether the gene expression changes are also reflected in the brain of THAP1 patients are still unclear. In this study we used epigenetic and transcriptomic approaches combined with multiple model systems (THAP1 patients' frontal cortex, THAP1 patients' iPSCs derived midbrain dopaminergic neurons, THAP1 heterozygous knock-out rat model, and THAP1 heterozygous knock-out SH-SY5Y cell lines) to uncover a novel function of THAP1 and the potential pathogenesis of DYT6 dystonia. We observed that THAP1 targeted only a minority of differentially expressed genes caused by its mutation. THAP1 mutations lead to dysregulation of genes mainly through regulation of SP1 family members, SP1 and SP4, in a cell type dependent manner. Comparing global differentially expressed genes detected in THAP1 patients' iPSCs derived midbrain dopaminergic neurons and THAP1 heterozygous knock-out rat striatum, we observed many common dysregulated genes and 61 of them are involved in dystonic syndromes related pathways, like synaptic transmission, nervous system development, and locomotor behavior. Further behavioral and electrophysiological studies confirmed the involvement of these pathways in THAP1 knock-out rats. Taking together, our study characterized the function of THAP1 and contributes to the understanding of the pathogenesis of primary dystonia in human and rat. As SP1 family members are dysregulated in some neurodegenerative diseases, our data may link THAP1 dystonia to multiple neurological diseases and may thus provide common treatment targets.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/brain/awac001DOI Listing
January 2022

MRI and CT imaging biomarkers of cerebral amyloid angiopathy in lobar intracerebral hemorrhage.

Int J Stroke 2022 Jan 7:17474930211062478. Epub 2022 Jan 7.

Stroke Research Centre, Institute of Neurology, UCL Queen Square Institute of Neurology and National Hospital of Neurology and Neurosurgery, London, UK.

Background: Cerebral amyloid angiopathy (CAA), a common cause of intracerebral hemorrhage (ICH), is diagnosed using the Boston criteria including magnetic resonance imaging (MRI) biomarkers (cerebral microbleeds (CMBs) and cortical superficial siderosis (cSS). The simplified Edinburgh criteria include computed tomography (CT) biomarkers (subarachnoid extension (SAE) and finger-like projections (FLPs)). The underlying mechanisms and diagnostic accuracy of CT compared to MRI biomarkers of CAA are unknown.

Methods: We included 140 survivors of spontaneous lobar supratentorial ICH with both acute CT and MRI. We assessed associations between MRI and CT biomarkers and the diagnostic accuracy of CT- compared to MRI-based criteria.

Results: FLPs were more common in patients with strictly lobar CMB (44.7% vs 23.5%; p = 0.014) and SAE was more common in patients with cSS (61.3% vs 31.2%; p = 0.002). The high probability of the CAA category of the simplified Edinburgh criteria showed 87.2% (95% confidence interval (CI): 78.3-93.4) specificity, 29.6% (95% CI: 18.0-43.6) sensitivity, 59.3% (95% CI: 38.8-77.6) positive predictive value, and 66.4% (95%: CI 56.9-75.0) negative predictive value, 2.3 (95% CI: 1.2-4.6) positive likelihood ratio and 0.8 (95% CI 0.7-1.0) negative likelihood ratio for probable CAA (vs non-probable CAA), defined by the modified Boston criteria; the area under the receiver operating characteristic curve (AUROC) was 0.62 (95% CI: 0.54-0.71).

Conclusion: In lobar ICH survivors, we found associations between putative biomarkers of parenchymal CAA (FLP and strictly lobar CMBs) and putative biomarkers of leptomeningeal CAA (SAE and cSS). In a hospital population, CT biomarkers might help rule-in probable CAA (diagnosed using the Boston criteria), but their absence is probably not as useful to rule it out, suggesting an important continued role for MRI in ICH survivors with suspected CAA.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1177/17474930211062478DOI Listing
January 2022

Clinico-radiological features, molecular spectrum, and identification of prognostic factors in developmental and epileptic encephalopathy due to inosine triphosphate pyrophosphatase (ITPase) deficiency.

Hum Mutat 2022 Jan 6. Epub 2022 Jan 6.

Pediatric Neurology Department, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran.

Developmental and epileptic encephalopathy 35 (DEE 35) is a severe neurological condition caused by biallelic variants in ITPA, encoding inosine triphosphate pyrophosphatase, an essential enzyme in purine metabolism. We delineate the genotypic and phenotypic spectrum of DEE 35, analyzing possible predictors for adverse clinical outcomes. We investigated a cohort of 28 new patients and reviewed previously described cases, providing a comprehensive characterization of 40 subjects. Exome sequencing was performed to identify underlying ITPA pathogenic variants. Brain MRI (magnetic resonance imaging) scans were systematically analyzed to delineate the neuroradiological spectrum. Survival curves according to the Kaplan-Meier method and log-rank test were used to investigate outcome predictors in different subgroups of patients. We identified 18 distinct ITPA pathogenic variants, including 14 novel variants, and two deletions. All subjects showed profound developmental delay, microcephaly, and refractory epilepsy followed by neurodevelopmental regression. Brain MRI revision revealed a recurrent pattern of delayed myelination and restricted diffusion of early myelinating structures. Congenital microcephaly and cardiac involvement were statistically significant novel clinical predictors of adverse outcomes. We refined the molecular, clinical, and neuroradiological characterization of ITPase deficiency, and identified new clinical predictors which may have a potentially important impact on diagnosis, counseling, and follow-up of affected individuals.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/humu.24326DOI Listing
January 2022

Genome-Wide Association Study of Clinical Outcome After Aneurysmal Subarachnoid Haemorrhage: Protocol.

Transl Stroke Res 2022 Jan 6. Epub 2022 Jan 6.

Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK.

Aneurysmal subarachnoid haemorrhage (aSAH) results in persistent clinical deficits which prevent survivors from returning to normal daily functioning. Only a small fraction of the variation in clinical outcome following aSAH is explained by known clinical, demographic and imaging variables; meaning additional unknown factors must play a key role in clinical outcome. There is a growing body of evidence that genetic variation is important in determining outcome following aSAH. Understanding genetic determinants of outcome will help to improve prognostic modelling, stratify patients in clinical trials and target novel strategies to treat this devastating disease. This protocol details a two-stage genome-wide association study to identify susceptibility loci for clinical outcome after aSAH using individual patient-level data from multiple international cohorts. Clinical outcome will be assessed using the modified Rankin Scale or Glasgow Outcome Scale at 1-24 months. The stage 1 discovery will involve meta-analysis of individual-level genotypes from different cohorts, controlling for key covariates. Based on statistical significance, supplemented by biological relevance, top single nucleotide polymorphisms will be selected for replication at stage 2. The study has national and local ethical approval. The results of this study will be rapidly communicated to clinicians, researchers and patients through open-access publication(s), presentation(s) at international conferences and via our patient and public network.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12975-021-00978-2DOI Listing
January 2022

Bi-allelic loss-of-function OBSCN variants predispose individuals to severe recurrent rhabdomyolysis.

Brain 2021 Dec 27. Epub 2021 Dec 27.

SA Pathology, Women and Children's Hospital, North Adelaide, SA, Australia.

Rhabdomyolysis is the acute breakdown of skeletal myofibres in response to an initiating factor, most commonly toxins and over exertion. A variety of genetic disorders predispose to rhabdomyolysis through different pathogenic mechanisms, particularly in patients with recurrent episodes. However, most cases remain without a genetic diagnosis. Here we present six patients who presented with severe and recurrent rhabdomyolysis, usually with onset in the teenage years; other features included a history of myalgia and muscle cramps. We identified ten bi-allelic loss-of-function variants in the gene encoding obscurin (OBSCN) predisposing individuals to recurrent rhabdomyolysis. We show reduced expression of OBSCN and loss of obscurin protein in patient muscle. Obscurin is proposed to be involved in SR function and Ca2+ handling. Patient cultured myoblasts appear more susceptible to starvation as evidenced by a greater decreased in SR Ca2+ content compared to control myoblasts. This likely reflects a lower efficiency when pumping Ca2+ back into the SR and/or a decrease in Ca2+ SR storage ability when metabolism is diminished. OSBCN variants have previously been associated with cardiomyopathies. None of the patients presented with a cardiomyopathy and cardiac examinations were normal in all cases in which cardiac function was assessed. There was also no history of cardiomyopathy in first degree relatives, in particular in any of the carrier parents. This cohort is relatively young, thus follow-up studies and the identification of additional cases with bi-allelic null OBSCN variants will further delineate OBSCN-related disease and the clinical course of disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/brain/awab484DOI Listing
December 2021

Motor neuron pathology in CANVAS due to RFC1 expansions.

Brain 2021 Dec 20. Epub 2021 Dec 20.

Sorbonne Université, Paris Brain Institute, APHP, INSERM, CNRS, Paris, France.

CANVAS caused by RFC1 biallelic expansions is a major cause of inherited sensory neuronopathy. Detection of RFC1 expansion is challenging and CANVAS can be associated with atypical features. We clinically and genetically characterized 50 patients, selected based on the presence of sensory neuronopathy confirmed by EMG. We screened RFC1 expansion by PCR, repeat-primed PCR, and Southern blotting of long-range PCR products, a newly developed method. Neuropathological characterization was performed on the brain and spinal cord of one patient. Most patients (88%) carried a biallelic (AAGGG)n expansion in RFC1. In addition to the core CANVAS phenotype (sensory neuronopathy, cerebellar syndrome, and vestibular impairment), we observed chronic cough (97%), oculomotor signs (85%), motor neuron involvement (55%), dysautonomia (50%), and parkinsonism (10%). Motor neuron involvement was found for 24 of 38 patients (63.1%). First motor neuron signs, such as brisk reflexes, extensor plantar responses, and/or spasticity, were present in 29% of patients, second motor neuron signs, such as fasciculations, wasting, weakness, or a neurogenic pattern on EMG in 18%, and both in 16%. Mixed motor and sensory neuronopathy was observed in 19% of patients. Among six non-RFC1 patients, one carried a heterozygous AAGGG expansion and a pathogenic variant in GRM1. Neuropathological examination of one RFC1 patient with an enriched phenotype, including parkinsonism, dysautonomia, and cognitive decline, showed posterior column and lumbar posterior root atrophy. Degeneration of the vestibulospinal and spinocerebellar tracts was mild. We observed marked astrocytic gliosis and axonal swelling of the synapse between first and second motor neurons in the anterior horn at the lumbar level. The cerebellum showed mild depletion of Purkinje cells, with empty baskets, torpedoes, and astrogliosis characterized by a disorganization of the Bergmann's radial glia. We found neuronal loss in the vagal nucleus. The pars compacta of the substantia nigra was depleted, with widespread Lewy bodies in the locus coeruleus, substantia nigra, hippocampus, entorhinal cortex, and amygdala. We propose new guidelines for the screening of RFC1 expansion, considering different expansion motifs. Here, we developed a new method to more easily detect pathogenic RFC1 expansions. We report frequent motor neuron involvement and different neuronopathy subtypes. Parkinsonism was more prevalent in this cohort than in the general population, 10% versus the expected 1% (p < 0.001). We describe, for the first time, the spinal cord pathology in CANVAS, showing the alteration of posterior columns and roots, astrocytic gliosis and axonal swelling, suggesting motor neuron synaptic dysfunction.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/brain/awab449DOI Listing
December 2021

Genetic defects are common in myopathies with tubular aggregates.

Ann Clin Transl Neurol 2021 Dec 15. Epub 2021 Dec 15.

Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London, UK.

Objective: A group of genes have been reported to be associated with myopathies with tubular aggregates (TAs). Many cases with TAs still lack of genetic clarification. This study aims to explore the genetic background of cases with TAs in order to improve our knowledge of the pathogenesis of these rare pathological structures.

Methods: Thirty-three patients including two family members with biopsy confirmed TAs were collected. Whole-exome sequencing was performed on 31 unrelated index patients and a candidate gene search strategy was conducted. The identified variants were confirmed by Sanger sequencing. The wild-type and the mutant p.Ala11Thr of ALG14 were transfected into human embryonic kidney 293 cells (HEK293), and western blot analysis was performed to quantify protein expression levels.

Results: Eleven index cases (33%) were found to have pathogenic variant or likely pathogenic variants in STIM1, ORAI1, PGAM2, SCN4A, CASQ1 and ALG14. Among them, the c.764A>T (p.Glu255Val) in STIM1 and the c.1333G>C (p.Val445Leu) in SCN4A were novel. Western blot analysis showed that the expression of ALG14 protein was severely reduced in the mutant ALG14 HEK293 cells (p.Ala11Thr) compared with wild type. The ALG14 variants might be associated with TAs in patients with complex multisystem disorders.

Interpretation: This study expands the phenotypic and genotypic spectrums of myopathies with TAs. Our findings further confirm previous hypothesis that genes related with calcium signalling pathway and N-linked glycosylation pathway are the main genetic causes of myopathies with TAs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/acn3.51477DOI Listing
December 2021

WARS2 mutations cause dopa-responsive early-onset parkinsonism and progressive myoclonus ataxia.

Parkinsonism Relat Disord 2021 Dec 2;94:54-61. Epub 2021 Dec 2.

Department of Neurology, Charles University, First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic.

Introduction: Sixteen subjects with biallelic WARS2 variants encoding the tryptophanyl mitochondrial aminoacyl-tRNA synthetase, presenting with a neonatal- or infantile-onset mitochondrial disease, have been reported to date. Here we present six novel cases with WARS2-related diseases and expand the spectrum to later onset phenotypes including dopa-responsive early-onset parkinsonism and progressive myoclonus-ataxia.

Methods: Six individuals from four families underwent whole-exome sequencing within research and diagnostic settings. Following the identification of a genetic defect, in-depth phenotyping and protein expression studies were performed.

Results: A relatively common (gnomAD MAF = 0.0033) pathogenic p.(Trp13Gly) missense variant in WARS2 was detected in trans in all six affected individuals in combination with different pathogenic alleles (exon 2 deletion in family 1; p.(Leu100del) in family 2; p.(Gly50Asp) in family 3; and p.(Glu208*) in family 4). Two subjects presented with action tremor around age 10-12 years and developed tremor-dominant parkinsonism with prominent neuropsychiatric features later in their 20s. Two subjects presented with a progressive myoclonus-ataxia dominant phenotype. One subject presented with spasticity, choreo-dystonia, myoclonus, and speech problems. One subject presented with speech problems, ataxia, and tremor. Western blotting analyses in patient-derived fibroblasts showed a markedly decreased expression of the full-length WARS2 protein in both subjects carrying p.(Trp13Gly) and an exon-2 deletion in compound heterozygosity.

Conclusions: This study expands the spectrum of the disease to later onset phenotypes of early-onset tremor-dominant parkinsonism and progressive myoclonus-ataxia phenotypes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.parkreldis.2021.11.030DOI Listing
December 2021

Novel Machado-Joseph disease-modifying genes and pathways identified by whole-exome sequencing.

Neurobiol Dis 2022 Jan 3;162:105578. Epub 2021 Dec 3.

Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal; Faculdade de Ciências e Tecnologia, Universidade dos Açores, Ponta Delgada, Portugal. Electronic address:

Machado-Joseph disease (MJD/SCA3) is a neurodegenerative polyglutamine disorder exhibiting a wide spectrum of phenotypes. The abnormal size of the (CAG)n at ATXN3 explains ~55% of the age at onset variance, suggesting the involvement of other factors, namely genetic modifiers, whose identification remains limited. Our aim was to find novel genetic modifiers, analyse their epistatic effects and identify disease-modifying pathways contributing to MJD variable expressivity. We performed whole-exome sequencing in a discovery sample of four age at onset concordant and four discordant first-degree relative pairs of Azorean patients, to identify candidate variants which genotypes differed for each discordant pair but were shared in each concordant pair. Variants identified by this approach were then tested in an independent multi-origin cohort of 282 MJD patients. Whole-exome sequencing identified 233 candidate variants, from which 82 variants in 53 genes were prioritized for downstream analysis. Eighteen disease-modifying pathways were identified; two of the most enriched pathways were relevant for the nervous system, namely the neuregulin signaling and the agrin interactions at neuromuscular junction. Variants at PARD3, NFKB1, CHD5, ACTG1, CFAP57, DLGAP2, ITGB1, DIDO1 and CERS4 modulate age at onset in MJD, with those identified in CFAP57, ACTG1 and DIDO1 showing consistent effects across cohorts of different geographical origins. Network analyses of the nine novel MJD modifiers highlighted several important molecular interactions, including genes/proteins previously related with MJD pathogenesis, namely between ACTG1/APOE and VCP/ITGB1. We describe novel pathways, modifiers, and their interaction partners, providing a broad molecular portrait of age at onset modulation to be further exploited as new disease-modifying targets for MJD and related diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nbd.2021.105578DOI Listing
January 2022

Bi-allelic variants in OGDHL cause a neurodevelopmental spectrum disease featuring epilepsy, hearing loss, visual impairment, and ataxia.

Am J Hum Genet 2021 12 19;108(12):2368-2384. Epub 2021 Nov 19.

Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran.

The 2-oxoglutarate dehydrogenase-like (OGDHL) protein is a rate-limiting enzyme in the Krebs cycle that plays a pivotal role in mitochondrial metabolism. OGDHL expression is restricted mainly to the brain in humans. Here, we report nine individuals from eight unrelated families carrying bi-allelic variants in OGDHL with a range of neurological and neurodevelopmental phenotypes including epilepsy, hearing loss, visual impairment, gait ataxia, microcephaly, and hypoplastic corpus callosum. The variants include three homozygous missense variants (p.Pro852Ala, p.Arg244Trp, and p.Arg299Gly), three compound heterozygous single-nucleotide variants (p.Arg673Gln/p.Val488Val, p.Phe734Ser/p.Ala327Val, and p.Trp220Cys/p.Asp491Val), one homozygous frameshift variant (p.Cys553Leufs16), and one homozygous stop-gain variant (p.Arg440Ter). To support the pathogenicity of the variants, we developed a novel CRISPR-Cas9-mediated tissue-specific knockout with cDNA rescue system for dOgdh, the Drosophila ortholog of human OGDHL. Pan-neuronal knockout of dOgdh led to developmental lethality as well as defects in Krebs cycle metabolism, which was fully rescued by expression of wild-type dOgdh. Studies using the Drosophila system indicate that p.Arg673Gln, p.Phe734Ser, and p.Arg299Gly are severe loss-of-function alleles, leading to developmental lethality, whereas p.Pro852Ala, p.Ala327Val, p.Trp220Cys, p.Asp491Val, and p.Arg244Trp are hypomorphic alleles, causing behavioral defects. Transcript analysis from fibroblasts obtained from the individual carrying the synonymous variant (c.1464T>C [p.Val488Val]) in family 2 showed that the synonymous variant affects splicing of exon 11 in OGDHL. Human neuronal cells with OGDHL knockout exhibited defects in mitochondrial respiration, indicating the essential role of OGDHL in mitochondrial metabolism in humans. Together, our data establish that the bi-allelic variants in OGDHL are pathogenic, leading to a Mendelian neurodevelopmental disease in humans.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2021.11.003DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8715183PMC
December 2021

Enrichment of alleles encoding variants with constitutively hyperactive NADase in patients with ALS and other motor nerve disorders.

Elife 2021 11 19;10. Epub 2021 Nov 19.

John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.

SARM1, a protein with critical NADase activity, is a central executioner in a conserved programme of axon degeneration. We report seven rare missense or in-frame microdeletion human variant alleles in patients with amyotrophic lateral sclerosis (ALS) or other motor nerve disorders that alter the SARM1 auto-inhibitory ARM domain and constitutively hyperactivate SARM1 NADase activity. The constitutive NADase activity of these seven variants is similar to that of SARM1 lacking the entire ARM domain and greatly exceeds the activity of wild-type SARM1, even in the presence of nicotinamide mononucleotide (NMN), its physiological activator. This rise in constitutive activity alone is enough to promote neuronal degeneration in response to otherwise non-harmful, mild stress. Importantly, these strong gain-of-function alleles are completely patient-specific in the cohorts studied and show a highly significant association with disease at the single gene level. These findings of disease-associated coding variants that alter SARM1 function build on previously reported genome-wide significant association with ALS for a neighbouring, more common intragenic single nucleotide polymorphism (SNP) to support a contributory role of SARM1 in these disorders. A broad phenotypic heterogeneity and variable age-of-onset of disease among patients with these alleles also raises intriguing questions about the pathogenic mechanism of hyperactive SARM1 variants.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.7554/eLife.70905DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8735862PMC
November 2021

High diagnostic rate of trio exome sequencing in consanguineous families with neurogenetic diseases.

Brain 2021 Nov 17. Epub 2021 Nov 17.

Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.

Consanguineous marriages have a prevalence rate of 24% in Turkey. These carry an increased risk of autosomal recessive genetic conditions, leading to severe disability or premature death, with a significant health and economic burden. A definitive molecular diagnosis could not be achieved in these children previously, as infrastructures and access to sophisticated diagnostic options were limited. We studied the cause of neurogenetic disease in 246 children from 190 consanguineous families, recruited in three Turkish hospitals between 2016 and 2020. All patients underwent deep phenotyping and trio whole exome sequencing, and data were integrated in advanced international bioinformatics platforms. We detected causative variants in 119 known disease genes in 72% of families. Due to overlapping phenotypes 52% of the confirmed genetic diagnoses would have been missed on targeted diagnostic gene panels. Likely pathogenic variants in 27 novel genes in 14% of the families increased the diagnostic yield to 86%. Eighty-two% of causative variants (141/172) were homozygous, 11 of which were detected in genes previously only associated with autosomal dominant inheritance. Eight families carried two pathogenic variants in different disease genes. De novo (9.3%), X-linked recessive (5.2%) and compound heterozygous (3.5%) variants were less frequent compared to non-consanguineous populations. This cohort provided a unique opportunity to better understand the genetic characteristics of neurogenetic diseases in a consanguineous population. Contrary to what may be expected, causative variants were often not on the longest run of homozygosity and the diagnostic yield was lower in families with the highest degree of consanguinity, due to the high number of homozygous variants in these patients. Pathway analysis highlighted that protein synthesis/degradation defects and metabolic diseases are the most common pathways underlying paediatric neurogenetic disease. In our cohort 164 families (86%) received a diagnosis, enabling prevention of transmission and targeted treatments in 24 patients (10%). We generated an important body of genomic data with lasting impacts on the health and wellbeing of consanguineous families, and economic benefit for the healthcare system in Turkey and elsewhere. We demonstrate that an untargeted next generation sequencing approach is far superior to a more targeted gene panel approach, and can be performed without specialised bioinformatics knowledge by clinicians using established pipelines in populations with high rates of consanguinity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/brain/awab395DOI Listing
November 2021

100,000 Genomes Pilot on Rare-Disease Diagnosis in Health Care - Preliminary Report.

N Engl J Med 2021 11;385(20):1868-1880

From Genomics England (D.S., K.R.S., A.M., E.A.T., E.M.M., A.T., G.C., K.I., L.M., M. Wielscher, A.N., M. Bale, E.B., C.B., H.B., M. Bleda, A. Devereau, D.H., E. Haraldsdottir, Z.H., D.K., C. Patch, D.P., A.M., R. Sultana, M.R., A.L.T.T., C. Tregidgo, C. Turnbull, M. Welland, S. Wood, C.S., E.W., S.L., R.E.F., L.C.D., O.N., I.U.S.L., C.F.W., J.C., R.H.S., T.F., A.R., M.C.), the William Harvey Research Institute, Queen Mary University of London (D.S., K.R.S., V.C., A.T., L.M., M.R.B., D.K., S. Wood, P.C., J.O.J., T.F., M.C.), University College London (UCL) Institute of Ophthalmology (V.C., G.A., M.M., A.T.M., S. Malka, N.P., P.Y.-W.-M., A.R.W.), UCL Genetics Institute (V.C., N.W.W.), GOSgene (H.J.W.), Genetics and Genomic Medicine Programme (L.V., M.R., M.D., L.C., P. Beales, M.B.-G.), National Institute for Health Research (NIHR) Great Ormond Street Hospital Biomedical Research Centre (BRC) (M.R., S. Grunewald, S.C.-L., F.M., C. Pilkington, L.R.W., L.C., P. Beales, M.B.-G.), Infection, Immunity, and Inflammation Research and Teaching Department (P.A., L.R.W.), Stem Cells and Regenerative Medicine (N.T.), and Mitochondrial Research Group (S. Rahman), UCL Great Ormond Street Institute of Child Health, UCL Ear Institute (L.V.), the Department of Renal Medicine (D. Bockenhauer), and Institute of Cardiovascular Science (P.E.), UCL, Moorfields Eye Hospital National Health Service (NHS) Foundation Trust (V.C., G.A., M.M., A.T.M., S. Malka, N.P., A.R.W.), the National Hospital for Neurology and Neurosurgery (J.V., E.O., J.Y., K. Newland, H.R.M., J.P., N.W.W., H.H.), the Metabolic Unit (L.A., S. Grunewald, S. Rahman), London Centre for Paediatric Endocrinology and Diabetes (M.D.), and the Department of Gastroenterology (N.T.), Great Ormond Street Hospital for Children NHS Foundation Trust (L.V., D. Bockenhauer, A. Broomfield, M.A.C., T. Lam, E.F., V.G., S.C.-L., F.M., C. Pilkington, R. Quinlivan, C.W., L.R.W., A. Worth, L.C., P. Beales, M.B.-G., R.H.S.), the Clinical Genetics Department (M.R., T.B., C. Compton, C.D., E. Haque, L.I., D.J., S. Mohammed, L.R., S. Rose, D.R., G.S., A.C.S., F.F., M.I.) and St. John's Institute of Dermatology (H.F., R. Sarkany), Guy's and St. Thomas' NHS Foundation Trust, the Division of Genetics and Epidemiology, Institute of Cancer Research (C. Turnbull), Florence Nightingale Faculty of Nursing, Midwifery, and Palliative Care (T.B.), Division of Genetics and Molecular Medicine (M.A.S.), and Division of Medical and Molecular Genetics (M.I.), King's College London, NIHR BRC at Moorfields Eye Hospital (P.Y.-W.-M.), NHS England and NHS Improvement, Skipton House (V.D., A. Douglas, S. Hill), and Imperial College Healthcare NHS Trust, Hammersmith Hospital (K. Naresh), London, Open Targets and European Molecular Biology Laboratory-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton (E.M.M.), the Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine, and Health, University of Manchester (J.M.E., S.B., J.C.-S., S.D., G.H., H.B.T., R.T.O., G. Black, W.N.), and the Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust (J.M.E., Z.H., S.B., J.C.-S., S.D., G.H., G. Black, W.N.), Manchester, the Department of Genetic and Genomic Medicine, Institute of Medical Genetics, Cardiff University, Cardiff (H.J.W.), the Department of Clinical Neurosciences (T.R., W.W., R.H., P.F.C.), the Medical Research Council (MRC) Mitochondrial Biology Unit (T.R., W.W., P.Y.-W.-M., P.F.C.), the Department of Paediatrics (T.R.), the Department of Haematology (K.S., C. Penkett, S. Gräf, R.M., W.H.O., A.R.), the School of Clinical Medicine (K.R., E.L., R.A.F., K.P., F.L.R.), the Department of Medicine (S. Gräf), and Cambridge Centre for Brain Repair, Department of Clinical Neurosciences (P.Y.-W.-M.), University of Cambridge, NIHR BioResource, Cambridge University Hospitals (K.S., S.A., R.J., C. Penkett, E.D., S. Gräf, R.M., M.K., J.R.B., P.F.C., W.H.O., F.L.R.), and Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust (G.F., P.T., O.S.-B., S. Halsall, K.P., A. Wagner, S.G.M., N.B., M.K.), Cambridge Biomedical Campus, Wellcome-MRC Institute of Metabolic Science and NIHR Cambridge BRC (M.G.), Congenica (A.H., H.S.), Illumina Cambridge (A. Wolejko, B.H., G. Burns, S. Hunter, R.J.G., S.J.H., D. Bentley), NHS Blood and Transplant (W.H.O.), and Wellcome Sanger Institute (W.H.O.), Cambridge, the Health Economics Research Centre (J. Buchanan, S. Wordsworth) and the Wellcome Centre for Human Genetics (C. Camps, J.C.T.), University of Oxford, NIHR Oxford BRC (J. Buchanan, S. Wordsworth, J.D., C. Crichton, J.W., K.W., C. Camps, S.P., N.B.A.R., A.S., J.T., J.C.T.), the Oxford Centre for Genomic Medicine (A. de Burca, A.H.N.), and the Departments of Haematology (N.B.A.R.) and Neurology (A.S.), Oxford University Hospitals NHS Foundation Trust, Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital (C. Campbell, K.G., T. Lester, J.T.), the MRC Weatherall Institute of Molecular Medicine (N.K., N.B.A.R., A.O.M.W.) and the Oxford Epilepsy Research Group (A.S.), Nuffield Department of Clinical Neurosciences (A.H.N.), University of Oxford, and the Department of Clinical Immunology (S.P.), John Radcliffe Hospital, Oxford, Peninsula Clinical Genetics Service, Royal Devon and Exeter NHS Foundation Trust (E.B.), and the University of Exeter Medical School (E.B., C.F.W.), Royal Devon and Exeter Hospital (S.E.), Exeter, Newcastle Eye Centre, Royal Victoria Infirmary (A.C.B.), the Institute of Genetic Medicine, Newcastle University, International Centre for Life (V.S., P. Brennan), Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University (G.S.G., R.H., A.M.S., D.M.T., R. Quinton, R.M., R.W.T., J.A.S.), Highly Specialised Mitochondrial Service (G.S.G., A.M.S., D.M.T., R.M., R.W.T.) and Northern Genetics Service (J. Burn), Newcastle upon Tyne Hospitals NHS Foundation Trust (J.A.S.), and NIHR Newcastle BRC (G.S.G., D.M.T., J.A.S.), Newcastle upon Tyne, the Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, University of Birmingham (C. Palles), and Birmingham Women's Hospital (D.M.), Birmingham, the Genomic Informatics Group (E.G.S.), University Hospital Southampton (I.K.T.), and the University of Southampton (I.K.T.), Southampton, Liverpool Women's NHS Foundation Trust, Liverpool (A. Douglas), the School of Cellular and Molecular Medicine, University of Bristol, Bristol (A.D.M.), and Yorkshire and Humber, Sheffield Children's Hospital, Sheffield (G.W.) - all in the United Kingdom; Fabric Genomics, Oakland (M. Babcock, M.G.R.), and the Ophthalmology Department, University of California, San Francisco School of Medicine, San Francisco (A.T.M.) - both in California; the Jackson Laboratory for Genomic Medicine, Farmington, CT (P.N.R.); and the Center for Genome Research and Biocomputing, Environmental and Molecular Toxicology, Oregon State University, Corvallis (M.H.).

Background: The U.K. 100,000 Genomes Project is in the process of investigating the role of genome sequencing in patients with undiagnosed rare diseases after usual care and the alignment of this research with health care implementation in the U.K. National Health Service. Other parts of this project focus on patients with cancer and infection.

Methods: We conducted a pilot study involving 4660 participants from 2183 families, among whom 161 disorders covering a broad spectrum of rare diseases were present. We collected data on clinical features with the use of Human Phenotype Ontology terms, undertook genome sequencing, applied automated variant prioritization on the basis of applied virtual gene panels and phenotypes, and identified novel pathogenic variants through research analysis.

Results: Diagnostic yields varied among family structures and were highest in family trios (both parents and a proband) and families with larger pedigrees. Diagnostic yields were much higher for disorders likely to have a monogenic cause (35%) than for disorders likely to have a complex cause (11%). Diagnostic yields for intellectual disability, hearing disorders, and vision disorders ranged from 40 to 55%. We made genetic diagnoses in 25% of the probands. A total of 14% of the diagnoses were made by means of the combination of research and automated approaches, which was critical for cases in which we found etiologic noncoding, structural, and mitochondrial genome variants and coding variants poorly covered by exome sequencing. Cohortwide burden testing across 57,000 genomes enabled the discovery of three new disease genes and 19 new associations. Of the genetic diagnoses that we made, 25% had immediate ramifications for clinical decision making for the patients or their relatives.

Conclusions: Our pilot study of genome sequencing in a national health care system showed an increase in diagnostic yield across a range of rare diseases. (Funded by the National Institute for Health Research and others.).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1056/NEJMoa2035790DOI Listing
November 2021

Use of whole genome sequencing to determine genetic basis of suspected mitochondrial disorders: cohort study.

BMJ 2021 11 3;375:e066288. Epub 2021 Nov 3.

Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK.

Objective: To determine whether whole genome sequencing can be used to define the molecular basis of suspected mitochondrial disease.

Design: Cohort study.

Setting: National Health Service, England, including secondary and tertiary care.

Participants: 345 patients with suspected mitochondrial disorders recruited to the 100 000 Genomes Project in England between 2015 and 2018.

Intervention: Short read whole genome sequencing was performed. Nuclear variants were prioritised on the basis of gene panels chosen according to phenotypes, ClinVar pathogenic/likely pathogenic variants, and the top 10 prioritised variants from Exomiser. Mitochondrial DNA variants were called using an in-house pipeline and compared with a list of pathogenic variants. Copy number variants and short tandem repeats for 13 neurological disorders were also analysed. American College of Medical Genetics guidelines were followed for classification of variants.

Main Outcome Measure: Definite or probable genetic diagnosis.

Results: A definite or probable genetic diagnosis was identified in 98/319 (31%) families, with an additional 6 (2%) possible diagnoses. Fourteen of the diagnoses (4% of the 319 families) explained only part of the clinical features. A total of 95 different genes were implicated. Of 104 families given a diagnosis, 39 (38%) had a mitochondrial diagnosis and 65 (63%) had a non-mitochondrial diagnosis.

Conclusion: Whole genome sequencing is a useful diagnostic test in patients with suspected mitochondrial disorders, yielding a diagnosis in a further 31% after exclusion of common causes. Most diagnoses were non-mitochondrial disorders and included developmental disorders with intellectual disability, epileptic encephalopathies, other metabolic disorders, cardiomyopathies, and leukodystrophies. These would have been missed if a targeted approach was taken, and some have specific treatments.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/bmj-2021-066288DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8565085PMC
November 2021

Myoclonic status epilepticus and cerebellar hypoplasia associated with a novel variant in the GRIA3 gene.

Neurogenetics 2022 Jan 3;23(1):27-35. Epub 2021 Nov 3.

Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.

AMPA-type glutamate receptors (AMPARs) are postsynaptic ionotropic receptors which mediate fast excitatory currents. AMPARs have a heterotetrameric structure, variably composed by the four subunits GluA1-4 which are encoded by genes GRIA1-4. Increasing evidence support the role of pathogenic variants in GRIA1-4 genes as causative for syndromic intellectual disability (ID). We report an Italian pedigree where some male individuals share ID, seizures and facial dysmorphisms. The index subject was referred for severe ID, myoclonic seizures, cerebellar signs and short stature. Whole exome sequencing identified a novel variant in GRIA3, c.2360A > G, p.(Glu787Gly). The GRIA3 gene maps to chromosome Xq25 and the c.2360A > G variant was transmitted by his healthy mother. Subsequent analysis in the family showed a segregation pattern compatible with the causative role of this variant, further supported by preliminary functional insights. We provide a detailed description of the clinical evolution of the index subjects and stress the relevance of myoclonic seizures and cerebellar syndrome as cardinal features of his presentation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10048-021-00666-1DOI Listing
January 2022

Expanding the phenotypic spectrum of BCS1L-related mitochondrial disease.

Ann Clin Transl Neurol 2021 11 18;8(11):2155-2165. Epub 2021 Oct 18.

Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, UK.

Objective: To delineate the full phenotypic spectrum of BCS1L-related disease, provide better understanding of the genotype-phenotype correlations and identify reliable prognostic disease markers.

Methods: We performed a retrospective multinational cohort study of previously unpublished patients followed in 15 centres from 10 countries. Patients with confirmed biallelic pathogenic BCS1L variants were considered eligible. Clinical, laboratory, neuroimaging and genetic data were analysed. Patients were stratified into different groups based on the age of disease onset, whether homozygous or compound heterozygous for the c.232A>G (p.Ser78Gly) variant, and those with other pathogenic BCS1L variants.

Results: Thirty-three patients were included. We found that growth failure, lactic acidosis, tubulopathy, hepatopathy and early death were more frequent in those with disease onset within the first month of life. In those with onset after 1 month, neurological features including movement disorders and seizures were more frequent. Novel phenotypes, particularly involving movement disorder, were identified in this group. The presence of the c.232A>G (p.Ser78Gly) variant was associated with significantly worse survival and exclusively found in those with disease onset within the first month of life, whilst other pathogenic BCS1L variants were more frequent in those with later symptom onset.

Interpretation: The phenotypic spectrum of BCS1L-related disease comprises a continuum of clinical features rather than a set of separate syndromic clinical identities. Age of onset defines BCS1L-related disease clinically and early presentation is associated with poor prognosis. Genotype correlates with phenotype in the presence of the c.232A>G (p.Ser78Gly) variant.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/acn3.51470DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8607453PMC
November 2021

A Novel Homozygous Variant is Associated with a Neurodevelopmental Disorder and Movement Abnormalities.

Mov Disord Clin Pract 2021 Oct 31;8(7):1140-1143. Epub 2021 Jul 31.

Department of Neuromuscular Disorders University College London, Institute of Neurology London United Kingdom.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/mdc3.13310DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8485619PMC
October 2021

Bi-allelic variants in SPATA5L1 lead to intellectual disability, spastic-dystonic cerebral palsy, epilepsy, and hearing loss.

Am J Hum Genet 2021 10;108(10):2006-2016

Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany.

Spermatogenesis-associated 5 like 1 (SPATA5L1) represents an orphan gene encoding a protein of unknown function. We report 28 bi-allelic variants in SPATA5L1 associated with sensorineural hearing loss in 47 individuals from 28 (26 unrelated) families. In addition, 25/47 affected individuals (53%) presented with microcephaly, developmental delay/intellectual disability, cerebral palsy, and/or epilepsy. Modeling indicated damaging effect of variants on the protein, largely via destabilizing effects on protein domains. Brain imaging revealed diminished cerebral volume, thin corpus callosum, and periventricular leukomalacia, and quantitative volumetry demonstrated significantly diminished white matter volumes in several individuals. Immunofluorescent imaging in rat hippocampal neurons revealed localization of Spata5l1 in neuronal and glial cell nuclei and more prominent expression in neurons. In the rodent inner ear, Spata5l1 is expressed in the neurosensory hair cells and inner ear supporting cells. Transcriptomic analysis performed with fibroblasts from affected individuals was able to distinguish affected from controls by principal components. Analysis of differentially expressed genes and networks suggested a role for SPATA5L1 in cell surface adhesion receptor function, intracellular focal adhesions, and DNA replication and mitosis. Collectively, our results indicate that bi-allelic SPATA5L1 variants lead to a human disease characterized by sensorineural hearing loss (SNHL) with or without a nonprogressive mixed neurodevelopmental phenotype.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2021.08.003DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8546233PMC
October 2021

Dissecting the Phenotype and Genotype of PLA2G6-Related Parkinsonism.

Mov Disord 2022 Jan 8;37(1):148-161. Epub 2021 Oct 8.

Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.

Background: Complex parkinsonism is the commonest phenotype in late-onset PLA2G6-associated neurodegeneration.

Objectives: The aim of this study was to deeply characterize phenogenotypically PLA2G6-related parkinsonism in the largest cohort ever reported.

Methods: We report 14 new cases of PLA2G6-related parkinsonism and perform a systematic literature review.

Results: PLA2G6-related parkinsonism shows a fairly distinct phenotype based on 86 cases from 68 pedigrees. Young onset (median age, 23.0 years) with parkinsonism/dystonia, gait/balance, and/or psychiatric/cognitive symptoms were common presenting features. Dystonia occurred in 69.4%, pyramidal signs in 77.2%, myoclonus in 65.2%, and cerebellar signs in 44.6% of cases. Early bladder overactivity was present in 71.9% of cases. Cognitive impairment affected 76.1% of cases and psychiatric features 87.1%, the latter being an isolated presenting feature in 20.1%. Parkinsonism was levodopa responsive but complicated by early, often severe dyskinesias. Five patients benefited from deep brain stimulation. Brain magnetic resonance imaging findings included cerebral (49.3%) and/or cerebellar (43.2%) atrophy, but mineralization was evident in only 28.1%. Presynaptic dopaminergic terminal imaging was abnormal in all where performed. Fifty-four PLA2G6 mutations have hitherto been associated with parkinsonism, including four new variants reported in this article. These are mainly nontruncating, which may explain the phenotypic heterogeneity of childhood- and late-onset PLA2G6-associated neurodegeneration. In five deceased patients, median disease duration was 13.0 years. Brain pathology in three cases showed mixed Lewy and tau pathology.

Conclusions: Biallelic PLA2G6 mutations cause early-onset parkinsonism associated with dystonia, pyramidal and cerebellar signs, myoclonus, and cognitive impairment. Early psychiatric manifestations and bladder overactivity are common. Cerebro/cerebellar atrophy are frequent magnetic resonance imaging features, whereas brain iron deposition is not. Early, severe dyskinesias are a tell-tale sign. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/mds.28807DOI Listing
January 2022

Biallelic variants in SLC38A3 encoding a glutamine transporter cause epileptic encephalopathy.

Brain 2021 Oct 4. Epub 2021 Oct 4.

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA.

The solute carrier (SLC) superfamily encompasses >400 transmembrane transporters involved in the exchange of amino acids, nutrients, ions, metals, neurotransmitters and metabolites across biological membranes. SLCs are highly expressed in the mammalian brain; defects in nearly 100 unique SLC-encoding genes (OMIM: https://www.omim.org) are associated with rare Mendelian disorders including developmental and epileptic encephalopathy (DEE) and severe neurodevelopmental disorders (NDDs). Exome sequencing and family-based rare variant analyses on a cohort with NDD identified two siblings with DEE and a shared deleterious homozygous splicing variant in SLC38A3. The gene encodes SNAT3, a sodium-coupled neutral amino acid transporter and a principal transporter of the amino acids asparagine, histidine, and glutamine, the latter being the precursor for the neurotransmitters GABA and glutamate. Additional subjects with a similar DEE phenotype and biallelic predicted-damaging SLC38A3 variants were ascertained through GeneMatcher and collaborations with research and clinical molecular diagnostic laboratories. Untargeted metabolomic analysis was performed to identify novel metabolic biomarkers. Ten individuals from seven unrelated families from six different countries with deleterious biallelic variants in SLC38A3 were identified. Global developmental delay, intellectual disability, hypotonia, and absent speech were common features while microcephaly, epilepsy, and visual impairment were present in the majority. Epilepsy was drug-resistant in half. Metabolomic analysis revealed perturbations of glutamate, histidine, and nitrogen metabolism in plasma, urine, and cerebrospinal fluid of selected subjects, potentially representing biomarkers of disease. Our data support the contention that SLC38A3 is a novel disease gene for DEE and illuminate the likely pathophysiology of the disease as perturbations in glutamine homeostasis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/brain/awab369DOI Listing
October 2021

Distribution of HLA Alleles and Genotypes in Patients with Chronic Inflammatory Demyelinating Polyneuropathy.

J Mol Neurosci 2021 Oct 1. Epub 2021 Oct 1.

Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Chronic inflammatory demyelinating polyneuropathy (CIDP) is an acquired immunological disorder. Although the precise pathoetiology of CIDP has not been clarified yet, it is believed that both B and T cells of immune system contribute in this disorder. Based on the importance of human leukocyte antigen (HLA) cluster in the regulation of immune responses, this family of proteins is putative determinants of risk of CIDP. We conducted the current investigation to appraise association between HLA alleles/genotypes/haplotypes and risk of CIDP in Iranian patients. HLA-DQB1*02 allele was significantly more prevalent among cases compared with controls (OR [95% CI] = 4.82 [2.06, 11.3], P value = 0.000215, adjusted P value = 0.0124). A*01-B*52-C*12-DRB1*15-DQB1*02 and A*23-B*35-C*04-DRB1*11-DQB1*03 haplotypes with frequency of 0.03 were the most frequent HLA haplotypes. These haplotypes were not detected among healthy controls. The present study introduces HLA-DQB1*02 allele as a risk allele for CIDP among Iranian patients and further supports the importance of HLA region in this immunological condition.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12031-021-01902-xDOI Listing
October 2021

Prominent and Regressive Brain Developmental Disorders Associated with Nance-Horan Syndrome.

Brain Sci 2021 Aug 29;11(9). Epub 2021 Aug 29.

Unit of Pediatric Nephrology and Dialysis, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy.

Nance-Horan syndrome (NHS) is a rare X-linked developmental disorder caused mainly by loss of function variants in the gene. NHS is characterized by congenital cataracts, dental anomalies, and distinctive facial features, and a proportion of the affected individuals also present intellectual disability and congenital cardiopathies. Despite identification of at least 40 distinct hemizygous variants leading to NHS, genotype-phenotype correlations remain largely elusive. In this study, we describe a Sicilian family affected with congenital cataracts and dental anomalies and diagnosed with NHS by whole-exome sequencing (WES). The affected boy from this family presented a late regression of cognitive, motor, language, and adaptive skills, as well as broad behavioral anomalies. Furthermore, brain imaging showed corpus callosum anomalies and periventricular leukoencephalopathy. We expand the phenotypic and mutational NHS spectrum and review potential disease mechanisms underlying the central neurological anomalies and the potential neurodevelopmental features associated with NHS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/brainsci11091150DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8465299PMC
August 2021

Homozygous missense variants cause a congenital disorder of autophagy with neurodevelopmental impairments of variable clinical severity and disease course.

Brain Commun 2021 3;3(3):fcab183. Epub 2021 Sep 3.

Human Genetics and Genome Research Division, Clinical Genetics Department, National Research Centre, 12311 Cairo, Egypt.

is a member of the human WIPI protein family (seven-bladed b-propeller proteins binding phosphatidylinositols, PROPPINs), which play a pivotal role in autophagy and has been implicated in the pathogenesis of several neurological conditions. The homozygous variant c.745G>A; p.(Val249Met) (NM_015610.4) has recently been associated with a neurodevelopmental disorder in a single family. Using exome sequencing and Sanger segregation analysis, here, two novel homozygous variants [c.551T>G; p.(Val184Gly) and c.724C>T; p.(Arg242Trp) (NM_015610.4)] were identified in four individuals of two consanguineous families. Additionally, follow-up clinical data were sought from the previously reported family. Three non-ambulant affected siblings of the first family harbouring the p.(Val184Gly) missense variant presented with microcephaly, profound global developmental delay/intellectual disability, refractory infantile/childhood-onset epilepsy, progressive tetraplegia with joint contractures and dyskinesia. In contrast, the proband of the second family carrying the p.(Arg242Trp) missense variant, similar to the initially reported cases, presented with a milder phenotype, encompassing moderate intellectual disability, speech and visual impairment, autistic features, and an ataxic gait. Brain MR imaging in five patients showed prominent white matter involvement with a global reduction in volume, posterior corpus callosum hypoplasia, abnormal dentate nuclei and hypoplasia of the inferior cerebellar vermis. To investigate the functional impact of these novel variants, we overexpressed both in -knockout HEK293A cells. In comparison to wildtype, expression of the Val166Gly WIPI2b mutant resulted in a deficient rescue of LC3 lipidation whereas Arg224Trp mutant increased LC3 lipidation, in line with the previously reported Val231Met variant. These findings support a dysregulation of the early steps of the autophagy pathway. Collectively, our findings provide evidence that biallelic variants cause a neurodevelopmental disorder of variable severity and disease course. Our report expands the clinical spectrum and establishes related disorder as a congenital disorders of autophagy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/braincomms/fcab183DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8453401PMC
September 2021

Investigating RFC1 expansions in sporadic amyotrophic lateral sclerosis.

J Neurol Sci 2021 Nov 31;430:118061. Epub 2021 Aug 31.

Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD 20892, USA; Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, University College London, London WC1N 1PJ, UK; Neurology Department, Johns Hopkins University, Baltimore, MD 21205, USA.

A homozygous AAGGG repeat expansion within the RFC1 gene was recently described as a common cause of CANVAS syndrome. We examined 1069 sporadic ALS patients for the presence of this repeat expansion. We did not discover any carriers of the homozygous AAGGG expansion in our ALS cohort, indicating that this form of RFC1 repeat expansions is not a common cause of sporadic ALS. However, our study did identify a novel repeat conformation and further expanded on the highly polymorphic nature of the RFC1 locus.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jns.2021.118061DOI Listing
November 2021

Metabolically induced intracellular pH changes activate mitophagy, autophagy, and cell protection in familial forms of Parkinson's disease.

FEBS J 2021 Sep 15. Epub 2021 Sep 15.

Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.

Parkinson's disease (PD) is a progressive neurodegenerative disorder induced by the loss of dopaminergic neurons in midbrain. The mechanism of neurodegeneration is associated with aggregation of misfolded proteins, oxidative stress, and mitochondrial dysfunction. Considering this, the process of removal of unwanted organelles or proteins by autophagy is vitally important in neurons, and activation of these processes could be protective in PD. Short-time acidification of the cytosol can activate mitophagy and autophagy. Here, we used sodium pyruvate and sodium lactate to induce changes in intracellular pH in human fibroblasts with PD mutations (Pink1, Pink1/Park2, α-synuclein triplication, A53T). We have found that both lactate and pyruvate in millimolar concentrations can induce a short-time acidification of the cytosol in these cells. This induced activation of mitophagy and autophagy in control and PD fibroblasts and protected against cell death. Importantly, application of lactate to acute brain slices of WT and Pink1 KO mice also induced a reduction of pH in neurons and astrocytes that increased the level of mitophagy. Thus, acidification of the cytosol by compounds, which play an important role in cell metabolism, can also activate mitophagy and autophagy and protect cells in the familial form of PD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/febs.16198DOI Listing
September 2021

Commentary: GM1-Gangliosidosis Type III Associated Parkinsonism.

Mov Disord Clin Pract 2021 Aug 3;8(Suppl 1):S24-S25. Epub 2021 Sep 3.

Movement Disorders Unit Neurology Service, The Federal University of Minas Gerais Belo Horizonte Brazil.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/mdc3.13301DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8414508PMC
August 2021
-->