Publications by authors named "Henrik Rahbek-Nielsen"

8 Publications

  • Page 1 of 1

A factor VIIIa-mimetic bispecific antibody, Mim8, ameliorates bleeding upon severe vascular challenge in hemophilia A mice.

Blood 2021 10;138(14):1258-1268

Global Research Technologies, Novo Nordisk A/S, Maaloev, Denmark; and.

Hemophilia A is a bleeding disorder resulting from deficient factor VIII (FVIII), which normally functions as a cofactor to activated factor IX (FIXa) that facilitates activation of factor X (FX). To mimic this property in a bispecific antibody format, a screening was conducted to identify functional pairs of anti-FIXa and anti-FX antibodies, followed by optimization of functional and biophysical properties. The resulting bispecific antibody (Mim8) assembled efficiently with FIXa and FX on membranes, and supported activation with an apparent equilibrium dissociation constant of 16 nM. Binding affinity with FIXa and FX in solution was much lower, with equilibrium dissociation constant values for FIXa and FX of 2.3 and 1.5 µM, respectively. In addition, the activity of Mim8 was dependent on stimulatory activity contributed by the anti-FIXa arm, which enhanced the proteolytic activity of FIXa by 4 orders of magnitude. In hemophilia A plasma and whole blood, Mim8 normalized thrombin generation and clot formation, with potencies 13 and 18 times higher than a sequence-identical analogue of emicizumab. A similar potency difference was observed in a tail vein transection model in hemophilia A mice, whereas reduction of bleeding in a severe tail-clip model was observed only for Mim8. Furthermore, the pharmacokinetic parameters of Mim8 were investigated and a half-life of 14 days shown in cynomolgus monkeys. In conclusion, Mim8 is an activated FVIII mimetic with a potent and efficacious hemostatic effect based on preclinical data.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood.2020010331DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8499050PMC
October 2021

A novel B-domain O-glycoPEGylated FVIII (N8-GP) demonstrates full efficacy and prolonged effect in hemophilic mice models.

Blood 2013 Mar 18;121(11):2108-16. Epub 2013 Jan 18.

Novo Nordisk, Måløv, Denmark.

Frequent infusions of intravenous factor VIII (FVIII) are required to prevent bleeding associated with hemophilia A. To reduce the treatment burden, recombinant FVIII with a longer half-life was developed without changing the protein structure. FVIII-polyethylene glycol (PEG) conjugates were prepared using an enzymatic process coupling PEG (ranging from 10 to 80 kDa) selectively to a unique O-linked glycan in the FVIII B-domain. Binding to von Willebrand factor (VWF) was maintained for all conjugates. Upon cleavage by thrombin, the B-domain and the associated PEG were released, generating activated FVIII (FVIIIa) with the same primary structure and specific activity as native FVIIIa. In both FVIII- and VWF-deficient mice, the half-life was found to increase with the size of PEG. In vivo potency and efficacy of FVIII conjugated with a 40-kDa PEG (N8-GP) and unmodified FVIII were not different. N8-GP had a longer duration of effect in FVIII-deficient mouse models, approximately a twofold prolonged half-life in mice, rabbits, and cynomolgus monkeys; however, the prolongation was less pronounced in rats. Binding capacity of N8-GP on human monocyte-derived dendritic cells was reduced compared with unmodified FVIII, resulting in several-fold reduced cellular uptake. In conclusion, N8-GP has the potential to offer efficacious prevention and treatment of bleeds in hemophilia A at reduced dosing frequency.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood-2012-01-407494DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3596971PMC
March 2013

Crystal structure of interleukin-21 receptor (IL-21R) bound to IL-21 reveals that sugar chain interacting with WSXWS motif is integral part of IL-21R.

J Biol Chem 2012 Mar 10;287(12):9454-60. Epub 2012 Jan 10.

Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark.

IL-21 is a class I cytokine that exerts pleiotropic effects on both innate and adaptive immune responses. It signals through a heterodimeric receptor complex consisting of the IL-21 receptor (IL-21R) and the common γ-chain. A hallmark of the class I cytokine receptors is the class I cytokine receptor signature motif (WSXWS). The exact role of this motif has not been determined yet; however, it has been implicated in diverse functions, including ligand binding, receptor internalization, proper folding, and export, as well as signal transduction. Furthermore, the WXXW motif is known to be a consensus sequence for C-mannosylation. Here, we present the crystal structure of IL-21 bound to IL-21R and reveal that the WSXWS motif of IL-21R is C-mannosylated at the first tryptophan. We furthermore demonstrate that a sugar chain bridges the two fibronectin domains that constitute the extracellular domain of IL-21R and anchors at the WSXWS motif through an extensive hydrogen bonding network, including mannosylation. The glycan thus transforms the V-shaped receptor into an A-frame. This finding offers a novel structural explanation of the role of the class I cytokine signature motif.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M111.311084DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3308775PMC
March 2012

N-glycosylation increases the circulatory half-life of human growth hormone.

Endocrinology 2010 Nov 8;151(11):5326-36. Epub 2010 Sep 8.

Biopharm Research Unit, Novo Nordisk A/S, 2760 Måløv, Denmark.

Therapeutic use of recombinant GH typically involves daily sc injections. We examined the possibilities for prolonging the in vivo circulation of GH by introducing N-glycans. Human GH variants with a single potential N-glycosylation site (N-X-S/T) introduced by site-directed mutagenesis were expressed in HEK293 cells. In a scan of 15 different positions for N-glycosylation sites, four positions (amino acids 93, 98, 99, and 101) were efficiently utilized and did not influence GH in vitro activity. A GH variant (3N-GH) with all these sites was produced in CHOK1SV cells and contained up to three N-glycans. Two pools of 3N-GH were purified and separated according to their charge by anion-exchange chromatography. Anion-exchange HPLC revealed that the N-glycans in the two pools were very similar except for the extent of sialylation. Both 3N-GH pools circulated longer in rats than wild-type GH. The terminal half-life of 3N-GH after iv injection was 24-fold prolonged compared with wild-type GH for the pool with the most pronounced sialylation, 13-fold prolonged for the less sialylated pool, and similar to the wild-type for desialylated 3N-GH. The less sialylated 3N-GH pool exhibited a profound pharmacodynamic effect in GH-deficient rats. Over a 4-d period, a single injection of 3N-GH induced a stronger IGF-I response and a larger increase in body weight than daily injections with wild-type GH. Thus, N-glycans can prolong the in vivo circulation and enhance the pharmacodynamic effect of GH. Sialic acids seem to play a pivotal role for the properties of glycosylated GH.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2010-0574DOI Listing
November 2010

Glucagon fibril polymorphism reflects differences in protofilament backbone structure.

J Mol Biol 2010 Apr 12;397(4):932-46. Epub 2010 Feb 12.

Protein Structure and Biophysics, Novo Nordisk A/S, Novo Nordisk Park, DK-2760 Måløv, Denmark.

Amyloid fibrils formed by the 29-residue peptide hormone glucagon at different concentrations have strikingly different morphologies when observed by transmission electron microscopy. Fibrils formed at low concentration (0.25 mg/mL) consist of two or more protofilaments with a regular twist, while fibrils at high concentration (8 mg/mL) consist of two straight protofilaments. Here, we explore the structural differences underlying glucagon polymorphism using proteolytic degradation, linear and circular dichroism, Fourier transform infrared spectroscopy (FTIR), and X-ray fiber diffraction. Morphological differences are perpetuated at all structural levels, indicating that the two fibril classes differ in terms of protofilament backbone regions, secondary structure, chromophore alignment along the fibril axis, and fibril superstructure. Straight fibrils show a conventional beta-sheet-rich far-UV circular dichroism spectrum whereas that of twisted fibrils is dominated by contributions from beta-turns. Fourier transform infrared spectroscopy confirms this and also indicates a more dense backbone with weaker hydrogen bonding for the twisted morphology. According to linear dichroism, the secondary structural elements and the aromatic side chains in the straight fibrils are more highly ordered with respect to the alignment axis than the twisted fibrils. A series of highly periodical reflections in the diffractogram of the straight fibrils can be fitted to the diffraction pattern expected from a cylinder. Thus, the highly integrated structural organization in the straight fibril leads to a compact and highly uniform fibril with a well-defined edge. Prolonged proteolytic digestion confirmed that the straight fibrils are very compact and stable, while parts of the twisted fibril backbone are much more readily degraded. Differences in the digest patterns of the two morphologies correlate with predictions from two algorithms, suggesting that the polymorphism is inherent in the glucagon sequence. Glucagon provides a striking illustration of how the same short sequence can be folded into two remarkably different fibrillar structures.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2010.02.012DOI Listing
April 2010

Increased production of chymosin by glycosylation.

J Biotechnol 2006 Sep 18;125(2):304-10. Epub 2006 Apr 18.

Chr. Hansen, Bøge Allé 10-12, DK-2970 Hørsholm, Denmark.

Filamentous fungi are well known in the industry as producers of large amounts of extracellular proteins. However, production levels of heterologous proteins are often disappointing low. In this paper it is shown that increasing glycosylation is a powerful strategy for increasing production levels of chymosin in filamentous fungi. Two different concepts based on glycosylation were tested. First, we improved a poorly used N-glycosylation site within the prochymosin molecule. The resulting highly glycosylated chymosin molecule was expressed in Aspergillus niger. It was shown that production of the glycosylated protein was much more efficient, giving a yield increase of more than 100% compared to production of the native chymosin molecule. In an alternative strategy the N-glycosylation site was located outside of the native chymosin molecule, on a linker separating prochymosin from its carrier molecule. Also in this case significantly increased production levels were obtained. This strategy might offer a powerful tool for increasing production levels of other heterologous proteins as well.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiotec.2006.02.024DOI Listing
September 2006

Characterization of recombinant camel chymosin reveals superior properties for the coagulation of bovine and camel milk.

Biochem Biophys Res Commun 2006 Apr 13;342(2):647-54. Epub 2006 Feb 13.

Institute of Food Science, Swiss Federal Institute of Technology, CH-8092 Zurich, Switzerland.

Enzymatic milk coagulation for cheese manufacturing involves the cleavage of the scissile bond in kappa-casein by an aspartic acid protease. Bovine chymosin is the preferred enzyme, combining a strong clotting activity with a low general proteolytic activity. In the present study, we report expression and enzymatic properties of recombinant camel chymosin expressed in Aspergillus niger. Camel chymosin was shown to have different characteristics than bovine chymosin. Camel chymosin exhibits a 70% higher clotting activity for bovine milk and has only 20% of the unspecific protease activity for bovine chymosin. This results in a sevenfold higher ratio of clotting to general proteolytic activity. The enzyme is more thermostable than bovine chymosin. Kinetic analysis showed that half-saturation is achieved with less than 50% of the substrate required for bovine chymosin and turnover rates are lower. While raw camel milk cannot be clotted with bovine chymosin, a high clotting activity was found with camel chymosin.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2006.02.014DOI Listing
April 2006

Tissue distribution, intracellular localization and proteolytic processing of rat 4-hydroxyphenylpyruvate dioxygenase.

Cell Biol Int 2003 ;27(8):611-24

Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark

4-hydroxyphenylpyruvate dioxygenase (HPD) is an important enzyme involved in tyrosine catabolism. HPD was shown to be identical to a protein named the F-antigen, exploited by immunologists because of its unique immunological properties. Congenital HPD deficiency is a rare, relatively benign condition known as hereditary type III tyrosinemia. Decreased expression of HPD is often observed in association with the severe type I tyrosinemia, and interestingly, inhibition of HPD activity seems to ameliorate the clinical symptoms of type I tyrosinemia. In this study we present a comprehensive analysis of tissue specific expression and intracellular localization of HPD in the rat. By combined use of in situ hybridization and immunohistochemistry we confirm previously known sites of expression in liver and kidney. In addition, we show that HPD is abundantly expressed in neurons in the cortex, cerebellum and hippocampus. By using immunoelectron microscopy and confocal laser scanning microscopy, we provide evidence that HPD contrary to earlier assumptions specifically localizes to membranes of the endoplasmic reticulum and the Golgi apparatus. Detailed mass spectrometric analyses of HPD purified from rat liver revealed N-terminal and C-terminal processing of HPD, and expression of recombinant HPD suggested that C-terminal processing enhances the enzymatic activity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1065-6995(03)00117-3DOI Listing
March 2004
-->