Publications by authors named "Hend E Abo Mansour"

4 Publications

  • Page 1 of 1

The AMPK modulator metformin as adjunct to methotrexate in patients with rheumatoid arthritis: A proof-of-concept, randomized, double-blind, placebo-controlled trial.

Int Immunopharmacol 2021 Jun 24;95:107575. Epub 2021 Mar 24.

Department of Biochemistry, Faculty of Pharmacy, Menoufia University, Egypt.

Background: Metformin (MET) may exert anti-rheumatic effects and reduce cartilage degradation through its immunomodulatory and anti-inflammatory actions.

Methods: This was a double-blind placebo-controlled study, 120 adult patients with active rheumatoid arthritis (RA) were randomized to receive MET (1000 mg) or placebo daily with methotrexate (MTX, 7.5 mg/week) for 12 weeks. American College of Rheumatology (ACR)20, ACR50, and ACR70 response rates, Disease Activity Score in 28 joints (DAS-28), and drug safety were the efficacy endpoints. Serum levels of TNF-α, IL-1β, IL-6, IL-10, IL-17A, NF-κB, TGG-β1, MDA together with gene expression of AMPK and IGF-IR were assessed before and after the therapy.

Results: A total of 80.8% of the patients in the MET group, compared with 54.7% in placebo group, met the criteria of ACR20 response after 12 weeks (P = 0.001). Statistically significant enhancements in the DAS28-3 (CRP) were observed after 4 and 8 weeks for the MET group compared with placebo and were sustained after 12 weeks. MET group showed statistically significant increase in percentage of patients achieving DAS remission after 12 weeks (P = 0.015). Significant improvements in ACR50, ACR70, Health Assessment Questionnaire Disability Index (HAQ-DI), and DAS28-3 (CRP) were also reported. MET was well-tolerated, and no serious adverse effects were reported in both groups. Furthermore, the MET group was superior in improving the measured parameters compared to the placebo.

Conclusions: MET improved the anti-rheumatic effect of MTX; suggesting it to be a beneficial adjuvant in patients with RA. Trial registration ID: NCT04068246.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2021.107575DOI Listing
June 2021

Ginger Extract Loaded into Chitosan Nanoparticles Enhances Cytotoxicity and Reduces Cardiotoxicity of Doxorubicin in Hepatocellular Carcinoma in Mice.

Nutr Cancer 2020 Sep 25:1-16. Epub 2020 Sep 25.

Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.

This study aimed to investigate the impact of ginger extract (GE) loaded into chitosan nanoparticles (CNPs) in enhancing cytotoxicity and reducing cardiotoxicity of doxorubicin (DXN) in hepatocellular carcinoma (HCC) induced mice. DXN and GE were loaded into CNPs and cytotoxicity of loaded and unloaded drugs against HepG2 cells was evaluated. HCC was induced in male albino mice by injection of diethylnitrosamine (DINA). Mice were divided into eight groups ( = 15): (1) normal control, (2) DINA, (3) CNPs, (4) free DXN, (5) CNPs DXN, (6) free GE, (7) CNPs GE, and (8) CNPs DXN + CNPs GE. Both GE and DXN loaded into CNPs showed a greater decline in cell viability of HepG2 cells than the unloaded forms. GE CNPs displayed pronounced anticancer activity In Vivo through apoptosis, greater down-regulation of multidrug resistance 1, enhancement of anti-oxidant activity and depletion of vascular endothelial growth factor content in liver tissues. GE CNPs in combination with DXN CNPs showed nearly normal hepatic lobule architecture and the greatest increase in apoptotic cell count. Co-treatment group had decreased cardiac malondialdehyde, tumor necrosis factor-α and serum activity of creatine kinase and lactate dehydrogenase. Combination of GE CNPs and DXN CNPs might be a potentially effective therapeutic approach for HCC.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/01635581.2020.1823436DOI Listing
September 2020

Metformin augments doxorubicin cytotoxicity in mammary carcinoma through activation of adenosine monophosphate protein kinase pathway.

Tumour Biol 2017 May;39(5):1010428317692235

Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt.

Since the incidence of breast cancer increases dramatically all over the world, the search for effective treatment is an urgent need. Metformin has demonstrated anti-tumorigenic effect both in vivo and in vitro in different cancer types. This work was designed to examine on molecular level the mode of action of metformin in mice bearing solid Ehrlich carcinoma and to evaluate the use of metformin in conjunction with doxorubicin as a combined therapy against solid Ehrlich carcinoma. Ehrlich ascites carcinoma cells were inoculated in 60 female mice as a model of breast cancer. The mice were divided into four equal groups: Control tumor, metformin, doxorubicin, and co-treatment. Metformin (15 mg/kg) and doxorubicin (4 mg/kg) were given intraperitoneally (i.p.) for four cycles every 5 days starting on day 12 of inoculation. The anti-tumorigenic effect of metformin was mediated by enhancement of adenosine monophosphate protein kinase activity and elevation of P53 protein as well as the suppression of nuclear factor-kappa B, DNA contents, and cyclin D1 gene expression. Metformin and doxorubicin mono-treatments exhibited opposing action regarding cyclin D1 gene expression, phosphorylated adenosine monophosphate protein kinase, and nuclear factor-kappa B levels. Co-treatment markedly decreased tumor volume, increased survival rate, and improved other parameters compared to doxorubicin group. In parallel, the histopathological findings demonstrated enhanced apoptosis and absence of necrosis in tumor tissue of co-treatment group. Metformin proved chemotherapeutic effect which could be mediated by the activation of adenosine monophosphate protein kinase and related pathways. Combining metformin and doxorubicin, which exhibited different mechanisms of action, produced greater efficacy as anticancer therapeutic regimen.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1177/1010428317692235DOI Listing
May 2017

Ginger extract adjuvant to doxorubicin in mammary carcinoma: study of some molecular mechanisms.

Eur J Nutr 2018 Apr 22;57(3):981-989. Epub 2017 Feb 22.

Department of Biochemistry, Faculty of Pharmacy, Tanta University, 31527, Tanta, Egypt.

Purpose: The present study aimed to investigate the molecular mechanisms underlying the anticancer properties of ginger extract (GE) in mice bearing solid Ehrlich carcinoma (SEC) and to evaluate the use of GE in combination with doxorubicin (DOX) as a complementary therapy against SEC.

Methods: SEC was induced in 60 female mice. Mice were divided into four equal groups: SEC, GE, DOX and GE + DOX. GE (100 mg/kg orally day after day) and DOX (4 mg/kg i.p. for 4 cycles every 5 days) were given to mice starting on day 12 of inoculation. On the 28th day, blood samples were collected, mice were scarified, tumor volume was measured, and tumor tissues were excised.

Results: The anti-cancer effect of GE was mediated by activation of adenosine monophosphate protein kinase (AMPK) and down-regulation of cyclin D1 gene expression. GE also showed pro-apoptotic properties as evidenced by elevation of the P53 and suppression of nuclear factor-kappa B (NF-κB) content in tumor tissue. Co-administration of GE alongside DOX markedly increased survival rate, decreased tumor volume, and increased the level of phosphorylated AMPK (PAMPK) and improved related pathways compared to DOX group. In addition, the histopathological results demonstrated enhanced apoptosis and absence of multinucleated cells in tumor tissue of GE + DOX group.

Conclusion: AMPK pathway and cyclin D1 gene expression could be a molecular therapeutic target for the anticancer effect of GE in mice bearing SEC. Combining GE and DOX revealed a greater efficacy as anticancer therapeutic regimen.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00394-017-1382-6DOI Listing
April 2018
-->