Publications by authors named "Helen D Kollias"

4 Publications

  • Page 1 of 1

Genetic disruption of Smad7 impairs skeletal muscle growth and regeneration.

J Physiol 2015 Jun 15;593(11):2479-97. Epub 2015 May 15.

Centre for Genetic Muscle Disorders, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, USA.

Key Points: Smad7 is an intracellular antagonist of transforming growth factor-β signalling pathways and modulates muscle growth in vivo. Loss of Smad7 results in decreased muscle mass, reduced force generation, fibre type switching from glycolytic towards oxidative type and delayed recovery from injury. Upregulated Smad2/3 signalling in Smad7(-/-) muscle results in reduced myoblast proliferation and differentiation. Smad7 is an important regulator of muscle growth and may be a potential intracellular therapeutic target for muscle disorders.

Abstract: The transforming growth factor-β (TGF-β) family of growth factors plays an essential role in mediating cellular growth and differentiation. Myostatin is a muscle-specific member of the TGF-β superfamily and a negative regulator of muscle growth. Myostatin inhibitors are currently being pursued as therapeutic options for muscle disorders. Smad7 inhibits intracellular myostatin signalling via Smad2/3, and thus presents a means of regulating myostatin and potentiating muscle growth. We investigated the functional loss of Smad7 on muscle in vivo by examining muscle growth and differentiation in mice deficient in Smad7 (Smad7(-/-) ). Smad7(-/-) mice showed reduced muscle mass, hypotrophy and hypoplasia of muscle fibres, as well as an increase in oxidative fibre types. Examination of muscle strength showed reduced force generation in vivo and ex vivo compared to wild-type controls. Analysis of muscle regeneration showed a delay in recovery, probably as a result of decreased activation, proliferation and differentiation of satellite cells, as confirmed in vitro. Additionally, myostatin expression was upregulated in Smad7(-/-) muscle. Our findings suggest that increased Smad2/3 signalling in the absence of Smad7 inhibition impedes muscle growth and regeneration. Taken together, our experiments demonstrate that Smad7 is an important mediator of muscle growth in vivo. Our studies enhance our understanding of in vivo TGF-β pathway modulation and suggest that Smad7 may be an important therapeutic target for muscle disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1113/JP270201DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4461410PMC
June 2015

Myostatin directly regulates skeletal muscle fibrosis.

J Biol Chem 2008 Jul 3;283(28):19371-8. Epub 2008 May 3.

Department of Neurology and Neuroscience, The Johns Hopkins University, School of Medicine, Baltimore, Maryland 21287, USA.

Skeletal muscle fibrosis is a major pathological hallmark of chronic myopathies in which myofibers are replaced by progressive deposition of collagen and other extracellular matrix proteins produced by muscle fibroblasts. Recent studies have shown that in the absence of the endogenous muscle growth regulator myostatin, regeneration of muscle is enhanced, and muscle fibrosis is correspondingly reduced. We now demonstrate that myostatin not only regulates the growth of myocytes but also directly regulates muscle fibroblasts. Our results show that myostatin stimulates the proliferation of muscle fibroblasts and the production of extracellular matrix proteins both in vitro and in vivo. Further, muscle fibroblasts express myostatin and its putative receptor activin receptor IIB. Proliferation of muscle fibroblasts, induced by myostatin, involves the activation of Smad, p38 MAPK and Akt pathways. These results expand our understanding of the function of myostatin in muscle tissue and provide a potential target for anti-fibrotic therapies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M802585200DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2443655PMC
July 2008

Transforming growth factor-beta and myostatin signaling in skeletal muscle.

J Appl Physiol (1985) 2008 Mar 21;104(3):579-87. Epub 2007 Nov 21.

Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, USA.

The superfamily of transforming growth factor-beta (TGF-beta) cytokines has been shown to have profound effects on cellular proliferation, differentiation, and growth. Recently, there have been major advances in our understanding of the signaling pathway(s) conveying TGF-beta signals to the nucleus to ultimately control gene expression. One tissue that is potently influenced by TGF-beta superfamily signaling is skeletal muscle. Skeletal muscle ontogeny and postnatal physiology have proven to be exquisitely sensitive to the TGF-beta superfamily cytokine milieu in various animal systems from mice to humans. Recently, major strides have been made in understanding the role of TGF-beta and its closely related family member, myostatin, in these processes. In this overview, we will review recent advances in our understanding of the TGF-beta and myostatin signaling pathways and, in particular, focus on the implications of this signaling pathway for skeletal muscle development, physiology, and pathology.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/japplphysiol.01091.2007DOI Listing
March 2008

Smad7 promotes and enhances skeletal muscle differentiation.

Mol Cell Biol 2006 Aug;26(16):6248-60

Department of Biology, 327 Farquharson, LSB, York University, 4700 Keele St., Toronto M3J 1P3 Ontario, Canada.

Transforming growth factor beta1 (TGF-beta1) and myostatin signaling, mediated by the same Smad downstream effectors, potently repress skeletal muscle cell differentiation. Smad7 inhibits these cytokine signaling pathways. The role of Smad7 during skeletal muscle cell differentiation was assessed. In these studies, we document that increased expression of Smad7 abrogates myostatin- but not TGF-beta1-mediated repression of myogenesis. Further, constitutive expression of exogenous Smad7 potently enhanced skeletal muscle differentiation and cellular hypertrophy. Conversely, targeting of endogenous Smad7 by small interfering RNA inhibited C2C12 muscle cell differentiation, indicating an essential role for Smad7 during myogenesis. Congruent with a role for Smad7 in myogenesis, we observed that the muscle regulatory factor (MyoD) binds to and transactivates the Smad7 proximal promoter region. Finally, we document that Smad7 directly interacts with MyoD and enhances MyoD transcriptional activity. Thus, Smad7 cooperates with MyoD, creating a positive loop to induce Smad7 expression and to promote MyoD driven myogenesis. Taken together, these data implicate Smad7 as a fundamental regulator of differentiation in skeletal muscle cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/MCB.00384-06DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1592807PMC
August 2006