Publications by authors named "Hartmut Kleinert"

58 Publications

NOX2ko Mice Show Largely Increased Expression of a Mutated NOX2 mRNA Encoding an Inactive NOX2 Protein.

Antioxidants (Basel) 2020 Oct 26;9(11). Epub 2020 Oct 26.

Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany.

Background: The superoxide-generating enzyme nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX2 or gp91phox, the phagocytic isoform) was reported as a major source of oxidative stress in various human diseases. Genetic deletion is widely used to study the impact of NOX2-derived reactive oxygen species (ROS) on disease development and progression in various animal models. Here, we investigate why NOX2 knockout mice show no NOX2 activity but express NOX2 mRNA and protein.

Methods And Results: Oxidative burst (NOX2-dependent formation of ROS) was measured by L-012-based chemiluminescence and was largely absent in whole blood of NOX2 knockout mice. Protein expression was still detectable in different tissues of the NOX2 knockout mice, at the expected and a slightly lower molecular weight (determined by Western blot). The NOX2 gene was even largely enhanced at its expressional level in NOX2 knockout mice. RNA sequencing revealed a modified NOX2 mRNA in the knockout mice that is obviously translated to a truncated inactive mutant enzyme.

Conclusion: Although the commercial NOX2 knockout mice display no considerable enzymatic NOX2 activity, expression of the NOX2 gene (when using standard primers) and protein (when using antibodies binding to the carboxy-terminal end) can still be detected, which may lead to confusion among investigators.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/antiox9111043DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7692237PMC
October 2020

The RNA-Binding Protein KSRP Modulates Cytokine Expression of CD4 T Cells.

J Immunol Res 2019 14;2019:4726532. Epub 2019 Aug 14.

Department of Pharmacology, University Medical Center of Johannes Gutenberg University, Mainz, Germany.

The KH-type splicing regulatory protein (KSRP) is a RNA-binding protein, which regulates the stability of many mRNAs encoding immune-relevant proteins. As KSRP regulates innate immune responses, for instance by the modulation of type I interferon mRNA stability, we were interested whether knockdown of the protein (KSRP) interferes with T cell activation and polarization. Polyclonally stimulated KSRP CD4 T cells proliferated at a higher extent and higher frequency and expressed the activation marker CD25 more than wild-type T cells. In supernatants of stimulated KSRP CD4 T cells, levels of IL-5, IL-9, IL-10, and IL-13 were observed to be increased compared to those of the control group. KSRP CD8 T cells showed no altered proliferative capacity upon polyclonal stimulation, but supernatants contained lower levels of interferon-. Similar changes in the cytokine expression patterns were also detected in T cells derived from KSRP mice undergoing arthritis induction indicative of a pathophysiological role of KSRP-dependent T cell polarization. We demonstrated the direct binding of KSRP to the 3' untranslated region of IL-13, IL-10, and IFN- mRNA in in vitro experiments. Moreover, since IL-4 mRNA decay was reduced in KSRP CD4 T cells, we identify KSRP as a negative regulator of IL-4 expression. These data indicate that overexpression of IL-4, which constitutes the primary inducer of Th2 polarization, may cause the Th2 bias of polyclonally stimulated KSRP CD4 T cells. This is the first report demonstrating that KSRP is involved in the regulation of T cell responses. We present strong evidence that T cells derived from KSRP mice favor Th2-driven immune responses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1155/2019/4726532DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6714327PMC
February 2020

Regulation of human inducible nitric oxide synthase expression by an upstream open reading frame.

Nitric Oxide 2019 07 18;88:50-60. Epub 2019 Apr 18.

Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 67, 55101, Mainz, Germany. Electronic address:

The human inducible nitric oxide synthase (iNOS) gene contains an upstream open reading frame (uORF) in its 5'-untranslated region (5'-UTR) implying a translational regulation of iNOS expression. Transfection experiments in human DLD-1 cells revealed that the uORF although translatable seems not to inhibit the translation start at the bona fide ATG. Our data clearly show that human iNOS translation is cap-dependent and that the 5'-UTR of the iNOS mRNA contains no internal ribosome entry site. Translation of the bona fide coding sequence is most likely mediated by a leaky scanning mechanism. The 5'-UTR is encoded by exon 1 and exon 2 of the iNOS gene with the uORF stop codon located in front of the first intron indicating an involvement of the nonsense mediated RNA decay (NMD) in iNOS regulation. SiRNA-mediated down-regulation of Upf1 resulted in enhanced endogenous cytokine iNOS expression in human DLD-1 cells. Transfection of constructs containing iNOS exon 1, intron 1 and exon 2 in front of a luciferase gene showed a clear effect of the mutation of the uORF-ATG on luciferase reportergene expression. Our data indicate that the uORF in the 5'-UTR sequence of human iNOS gene reduces its expression via the NMD mechanism.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.niox.2019.04.008DOI Listing
July 2019

The KH-type splicing regulatory protein (KSRP) regulates type III interferon expression post-transcriptionally.

Biochem J 2019 01 31;476(2):333-352. Epub 2019 Jan 31.

Department of Pharmacology, University Medical Center of the Johannes Gutenberg-University, Obere Zahlbacher Str. 67, 55101 Mainz, Germany

Type III interferons (IFNs) are the latest members of the IFN family. They play an important role in immune defense mechanisms, especially in antiviral responses at mucosal sites. Moreover, they control inflammatory reactions by modulating neutrophil and dendritic cell functions. Therefore, it is important to identify cellular mechanisms involved in the control of type III IFN expression. All IFN family members contain AU-rich elements (AREs) in the 3'-untranslated regions (3'-UTR) of their mRNAs that determine mRNA half-life and consequently the expressional level of these cytokines. mRNA stability is controlled by different proteins binding to these AREs leading to either stabilization or destabilization of the respective target mRNA. The KH-type splicing regulatory protein KSRP (also named KHSRP) is an important negative regulator of ARE-containing mRNAs. Here, we identify the interferon lambda 3 () mRNA as a new KSRP target by pull-down and immunoprecipitation experiments, as well as luciferase reporter gene assays. We characterize the KSRP-binding site in the 3'-UTR and demonstrate that KSRP regulates the mRNA half-life of the transcript. In addition, we detect enhanced expression of mRNA in KSRP mice, establishing a negative regulatory function of KSRP in type III IFN expression also Besides KSRP the RNA-binding protein AUF1 (AU-rich element RNA-binding protein 1) also seems to be involved in the regulation of type III IFN mRNA expression.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1042/BCJ20180522DOI Listing
January 2019

Differentially Tolerized Mouse Antigen Presenting Cells Share a Common miRNA Signature Including Enhanced mmu-miR-223-3p Expression Which Is Sufficient to Imprint a Protolerogenic State.

Front Pharmacol 2018 17;9:915. Epub 2018 Aug 17.

Department of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, Germany.

Dendritic cells (DCs) are pivotal for the induction and maintenance of antigen-specific tolerance and immunity. miRNAs mediate post-transcriptional gene regulation and control in part the differentiation and stimulation-induced immunogenic function of DCs. However, the relevance of miRNAs for the induction and maintenance of a tolerogenic state of DCs has scarcely been highlighted yet. We differentiated mouse bone marrow cells to conventional/myeloid DCs or to tolerogenic antigen presenting cells (APCs) by using a glucocorticoid (dexamethasone) or interleukin-10, and assessed the miRNA expression patterns of unstimulated and LPS-stimulated cell populations by array analysis and QPCR. Differentially tolerized mouse APCs convergingly down-regulated a set of miRNA species at either state of activation as compared with the corresponding control DC population (mmu-miR-9-5p, mmu-miR-9-3p, mmu-miR-155-5p). These miRNAs were also upregulated in control DCs in response to stimulation. In contrast, miRNAs that were convergingly upregulated in both tolerized APC groups at stimulated state (mmu-miR-223-3p, mmu-miR-1224-5p) were downregulated in control DCs in response to stimulation. Overexpression of mmu-miR-223-3p in DCs was sufficient to prevent stimulation-associated acquisition of potent T cell stimulatory capacity. Overexpression of mmu-miR-223-3p in a DC line resulted in attenuated expression of known (Cflar, Rasa1, Ras) mRNA targets of this miRNA species shown to affect pathways that control DC activation. Taken together, we identified sets of miRNAs convergingly regulated in differentially tolerized APCs, which may contribute to imprint stimulation-resistant tolerogenic function as demonstrated for mmu-miR-223-3p. Knowledge of miRNAs with protolerogenic function enables immunotherapeutic approaches aimed to modulate immune responses by regulating miRNA expression.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fphar.2018.00915DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6108336PMC
August 2018

CD40L controls obesity-associated vascular inflammation, oxidative stress, and endothelial dysfunction in high fat diet-treated and db/db mice.

Cardiovasc Res 2018 02;114(2):312-323

Center for Cardiology 1, Molecular Cardiology; Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.

Aims: CD40 ligand (CD40L) signaling controls vascular oxidative stress and related dysfunction in angiotensin-II-induced arterial hypertension by regulating vascular immune cell recruitment and platelet activation. Here we investigated the role of CD40L in experimental hyperlipidemia.

Methods And Results: Male wild type and CD40L-/- mice (C57BL/6 background) were subjected to high fat diet for sixteen weeks. Weight, cholesterol, HDL, and LDL levels, endothelial function (isometric tension recording), oxidative stress (NADPH oxidase expression, dihydroethidium fluorescence) and inflammatory parameters (inducible nitric oxide synthase, interleukin-6 expression) were assessed. CD40L expression, weight, leptin and lipids were increased, and endothelial dysfunction, oxidative stress and inflammation were more pronounced in wild type mice on a high fat diet, all of which was almost normalized by CD40L deficiency. Similar results were obtained in diabetic db/db mice with CD40/TRAF6 inhibitor (6877002) therapy. In a small human study higher serum sCD40L levels and an inflammatory phenotype were detected in the blood and Aorta ascendens of obese patients (body mass index > 35) that underwent by-pass surgery.

Conclusion: CD40L controls obesity-associated vascular inflammation, oxidative stress and endothelial dysfunction in mice and potentially humans. Thus, CD40L represents a therapeutic target in lipid metabolic disorders which is a leading cause in cardiovascular disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/cvr/cvx197DOI Listing
February 2018

Inactivation of the KSRP gene modifies collagen antibody induced arthritis.

Mol Immunol 2017 07 13;87:207-216. Epub 2017 May 13.

Department of Pharmacology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany. Electronic address:

The KH type splicing regulatory protein (KSRP) is a nucleic acid binding protein, which negatively regulates the stability and/or translatability of many mRNA species encoding immune-relevant proteins. As KSRP is expressed in immune cells including T and B cells, neutrophils, macrophages and dendritic cells, we wanted to analyze its importance for the development of autoimmune diseases. We chose collagen antibody-induced arthritis (CAIA) as an appropriate autoimmune disease mouse model in which neutrophils and macrophages constitute the main effector cell populations. We compared arthritis induction in wild type (WT) and KSRP mice and paws were taken for histological sections and qPCR analysis. Furthermore, we determined the frequencies of spleen immune cells by flow cytometry. Cytokine levels in spleen cell supernatants were determined by cytometric bead array analyses (CBA). After CAIA induction we unexpectedly observed in WT animals much stronger swelling of the paws than in KSRP mice. In accordance, histological staining of paw sections of KSRP animals revealed much lower frequencies of infiltrating immune cells in the joints compared to WT animals. Furthermore, CAIA-treatment resulted in reduced expression of several inflammatory factors (like CXCL-1, iNOS, TNF-α and S100A8) as well as immune cell marker genes (e.g. LFA-1, CD68, Ly6G) in the joints of KSRP mice. Spleen cells of KSRP mice showed lower frequencies of myeloid cells. On cytokine level IFN-γ production was increased in spleen cells of KSRP mice compared to WT samples. These data surprisingly suggest that the absence of KSRP protects against the induction of inflammatory arthritis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molimm.2017.05.003DOI Listing
July 2017

Past, present and future of immunology in Mainz.

Cell Immunol 2016 10;308:1-6

Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University, Mainz, Germany; Institute for Immunology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cellimm.2016.09.001DOI Listing
October 2016

Tristetraprolin regulation of interleukin-22 production.

Sci Rep 2015 Oct 21;5:15112. Epub 2015 Oct 21.

pharmazentrum frankfurt/ZAFES, University Hospital Goethe-University Frankfurt, Germany.

Interleukin (IL)-22 is a STAT3-activating cytokine displaying characteristic AU-rich elements (ARE) in the 3'-untranslated region (3'-UTR) of its mRNA. This architecture suggests gene regulation by modulation of mRNA stability. Since related cytokines undergo post-transcriptional regulation by ARE-binding tristetraprolin (TTP), the role of this destabilizing protein in IL-22 production was investigated. Herein, we demonstrate that TTP-deficient mice display augmented serum IL-22. Likewise, IL-22 mRNA was enhanced in TTP-deficient splenocytes and isolated primary T cells. A pivotal role for TTP is underscored by an extended IL-22 mRNA half-life detectable in TTP-deficient T cells. Luciferase-reporter assays performed in human Jurkat T cells proved the destabilizing potential of the human IL-22-3'-UTR. Furthermore, overexpression of TTP in HEK293 cells substantially decreased luciferase activity directed by the IL-22-3'-UTR. Transcript destabilization by TTP was nullified upon cellular activation by TPA/A23187, an effect dependent on MEK1/2 activity. Accordingly, IL-22 mRNA half-life as determined in TPA/A23187-stimulated Jurkat T cells decreased under the influence of the MEK1/2 inhibitor U0126. Altogether, data indicate that TTP directly controls IL-22 production, a process counteracted by MEK1/2. The TTP-dependent regulatory pathway described herein likely contributes to the role of IL-22 in inflammation and cancer and may evolve as novel target for pharmacological IL-22 modulation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/srep15112DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4613560PMC
October 2015

Anti-Inflammatory and Anti-Thrombotic Effects of the Fungal Metabolite Galiellalactone in Apolipoprotein E-Deficient Mice.

PLoS One 2015 15;10(6):e0130401. Epub 2015 Jun 15.

Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.

Patients suffering from chronic inflammatory diseases have an increased mortality risk resulting from cardiovascular disorders due to enhanced atherosclerotic and thrombotic events. Until now, it is not completely understood in which way an abnormal expression of pro-inflammatory mediators contributes to this elevated cardiovascular risk, but there is a need for new drugs that on the one hand suppress the expression of pro-inflammatory mediators and on the other hand inhibit arterial platelet adhesion. Thus, we analyzed the anti-inflammatory and anti-thrombotic capacity of the fungal metabolite Galiellalactone in atherosclerosis-prone apolipoprotein E-deficient mice. Treatment of the mice with Galiellalactone lowered the inflammatory expression profile and improved blood clotting times, as well as platelet adhesion to the injured common carotid artery. The results indicate that administration of Galiellalactone is able to reduce the extent of inflammation and arterial platelet adhesion in this mouse model.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0130401PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4468253PMC
May 2016

Resveratrol post-transcriptionally regulates pro-inflammatory gene expression via regulation of KSRP RNA binding activity.

Nucleic Acids Res 2014 Nov 28;42(20):12555-69. Epub 2014 Oct 28.

Department of Pharmacology, Johannes Gutenberg-University Medical Center, Mainz, Germany

Resveratrol shows beneficial effects in inflammation-based diseases like cancer, cardiovascular and chronic inflammatory diseases. Therefore, the molecular mechanisms of the anti-inflammatory resveratrol effects deserve more attention. In human epithelial DLD-1 and monocytic Mono Mac 6 cells resveratrol decreased the expression of iNOS, IL-8 and TNF-α by reducing mRNA stability without inhibition of the promoter activity. Shown by pharmacological and siRNA-mediated inhibition, the observed effects are SIRT1-independent. Target-fishing and drug responsive target stability experiments showed selective binding of resveratrol to the RNA-binding protein KSRP, a central post-transcriptional regulator of pro-inflammatory gene expression. Knockdown of KSRP expression prevented resveratrol-induced mRNA destabilization in human and murine cells. Resveratrol did not change KSRP expression, but immunoprecipitation experiments indicated that resveratrol reduces the p38 MAPK-related inhibitory KSRP threonine phosphorylation, without blocking p38 MAPK activation or activity. Mutation of the p38 MAPK target site in KSRP blocked the resveratrol effect on pro-inflammatory gene expression. In addition, resveratrol incubation enhanced KSRP-exosome interaction, which is important for mRNA degradation. Finally, resveratrol incubation enhanced its intra-cellular binding to the IL-8, iNOS and TNF-α mRNA. Therefore, modulation of KSRP mRNA binding activity and, thereby, enhancement of mRNA degradation seems to be the common denominator of many anti-inflammatory effects of resveratrol.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/nar/gku1033DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4227754PMC
November 2014

Targeting V-ATPase in primary human monocytes by archazolid potently represses the classical secretion of cytokines due to accumulation at the endoplasmic reticulum.

Biochem Pharmacol 2014 Oct 12;91(4):490-500. Epub 2014 Aug 12.

Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany. Electronic address:

The macrolide archazolid inhibits vacuolar-type H(+)-ATPase (V-ATPase), a proton-translocating enzyme involved in protein transport and pH regulation of cell organelles, and potently suppresses cancer cell growth at low nanomolar concentrations. In view of the growing link between inflammation and cancer, we investigated whether inhibition of V-ATPase by archazolid may affect primary human monocytes that can promote cancer by sustaining inflammation through the release of tumor-promoting cytokines. Human primary monocytes express V-ATPase, and archazolid (10-100nM) increases the vesicular pH in these cells. Archazolid (10nM) markedly reduced the release of pro-inflammatory (TNF-α, interleukin-6 and -8) but also of anti-inflammatory (interleukin-10) cytokines in monocytes stimulated with LPS, without affecting cell viability up to 1000nM. Of interest, secretion of interleukin-1β was increased by archazolid. Comparable effects were obtained by the V-ATPase inhibitors bafilomycin and apicularen. The phosphorylation of p38 MAPK and ERK-1/2, Akt, SAPK/JNK or of the inhibitor of NFκB (IκBα) as well as mRNA expression of IL-8 were not altered by archazolid in LPS-stimulated monocytes. Instead, archazolid caused endoplasmic reticulum (ER) stress response visualized by increased BiP expression and accumulation of IL-8 (and TNF-α) at the ER, indicating a perturbation of protein secretion. In conclusion, by interference with V-ATPase, archazolid significantly affects the secretion of cytokines due to accumulation at the ER which might be of relevance when using these agents for cancer therapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcp.2014.07.028DOI Listing
October 2014

Endothelial dysfunction in tristetraprolin-deficient mice is not caused by enhanced tumor necrosis factor-α expression.

J Biol Chem 2014 May 11;289(22):15653-65. Epub 2014 Apr 11.

From the Department of Pharmacology,

Cardiovascular events are important co-morbidities in patients with chronic inflammatory diseases like rheumatoid arthritis. Tristetraprolin (TTP) regulates pro-inflammatory processes through mRNA destabilization and therefore TTP-deficient mice (TTP(-/-) mice) develop a chronic inflammation resembling human rheumatoid arthritis. We used this mouse model to evaluate molecular signaling pathways contributing to the enhanced atherosclerotic risk in chronic inflammatory diseases. In the aorta of TTP(-/-) mice we observed elevated mRNA expression of known TTP targets like tumor necrosis factor-α (TNF-α) and macrophage inflammatory protein-1α, as well as of other pro-atherosclerotic mediators, like Calgranulin A, Cathepsin S, and Osteopontin. Independent of cholesterol levels TTP(-/-) mice showed a significant reduction of acetylcholine-induced, nitric oxide-mediated vasorelaxation. The endothelial dysfunction in TTP(-/-) mice was associated with increased levels of reactive oxygen and nitrogen species (RONS), indicating an enhanced nitric oxide inactivation by RONS in the TTP(-/-) animals. The altered RONS generation correlates with increased expression of NADPH oxidase 2 (Nox2) resulting from enhanced Nox2 mRNA stability. Although TNF-α is believed to be a central mediator of inflammation-driven atherosclerosis, genetic inactivation of TNF-α neither improved endothelial function nor normalized Nox2 expression or RONS production in TTP(-/-) animals. Systemic inflammation caused by TTP deficiency leads to endothelial dysfunction. This process is independent of cholesterol and not mediated by TNF-α solely. Thus, other mediators, which need to be identified, contribute to enhanced cardiovascular risk in chronic inflammatory diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M114.566984DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4140920PMC
May 2014

The fungal lactone oxacyclododecindione is a potential new therapeutic substance in the treatment of lupus-associated kidney disease.

Kidney Int 2014 Oct 9;86(4):780-9. Epub 2014 Apr 9.

Department of Pharmacology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.

Recently oxacyclododecindione (Oxa), a macrocyclic lactone isolated from the imperfect fungus Exserohilum rostratum, has been described as a potent transcription inhibitor of inducible proinflammatory and profibrotic genes in cell culture models. As kidney disease in systemic lupus erythematosus is characterized by aberrant expression of inflammatory mediators and infiltration of immune cells, we investigated the effect of Oxa in MRL-Fas(lpr) mice, a model of systemic lupus erythematosus. These mice develop a spontaneous T-cell and macrophage-dependent autoimmune disease including severe glomerulonephritis that shares features with human lupus. Comparable to the results of in vitro models, we found a reduced expression of the cytokines IFN-γ, IL-6, and TNF-α and the chemokines CCL2, RANTES, and CSF-1 on mRNA and protein level in the kidney of Oxa-treated MRL-Fas(lpr) mice. Accordingly, Oxa treatment reduced the infiltration of immune cells and the frequency of activated proinflammatory T cells in the kidney. Moreover, kidney disease, measured by histopathology, IgG and collagen deposition, and proteinuria, was ameliorated in Oxa-treated MRL-Fas(lpr) mice compared with the control group. Thus, Oxa is a new effective anti-inflammatory compound, which may serve as base structure for the development of new therapeutics for the treatment of chronic inflammatory and/or fibrotic diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ki.2014.109DOI Listing
October 2014

T cell-specific overexpression of TGFß1 fails to influence atherosclerosis in ApoE-deficient mice.

PLoS One 2013 5;8(12):e81444. Epub 2013 Dec 5.

Animal Laboratory Services, German Cancer Research Center, Heidelberg, Germany.

Clinical data have indicated a negative correlation between plasma TGFß1 concentrations and the extent of atherosclerosis and have thus led to the hypothesis that the pleiotropic cytokine may have anti-atherogenic properties. T-cells are currently discussed to significantly participate in atherogenesis, but the precise role of adaptive immunity in atherogenesis remains to be elucidated. TGFß1 is known to strongly modulate the function of T-cells, however, inhibition of TGFß1 signalling in T-cells of atherosclerosis-prone knock-out mice failed to unequivocally clarify the role of the cytokine for the development of atherosclerosis. In the present study, we thus tried to specify the role of TGFß1 in atherogenesis by using the murine CD2-TGFß1 transgenic strain which represents a well characterized model of T-cell specific TGFß1 overexpression. The CD2-TGFß1 transgenic mice were crossed to ApoE knock-out mice and quantity and quality of atherosclerosis regarding number of macrophages, smooth muscle cells, CD3 positive T-cells and collagen was analyzed in CD2-TGFß1 ApoE double mutants as well as non-transgenic ApoE controls on both normal and atherogenic diet of a duration of 8, 16 or 24 weeks, respectively. In all experimental groups investigated, we failed to detect any influence of TGFß1 overexpression on disease. Total number of CD3-positive T-lymphocytes was not significantly different in atherosclerotic lesions of CD2-TGFß1 ApoE(-/-) females and isogenic ApoE(-/-) controls, even after 24 weeks on the atherogenic diet. The synopsis of these data and our previous study on TGFß1 overexpressing macrophages suggests that potential effects of TGFß1 on atherosclerosis are most probably mediated by macrophages rather than T-cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0081444PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3855303PMC
March 2015

Post-transcriptional regulation of the human inducible nitric oxide synthase (iNOS) expression by the cytosolic poly(A)-binding protein (PABP).

Nitric Oxide 2013 Sep 25;33:6-17. Epub 2013 May 25.

Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, D 55101 Mainz, Germany.

Affinity purification using the 3'-untranslated region (3'-UTR) of the human inducible nitric oxide synthase (iNOS) mRNA identified the cytosolic poly(A)-binding protein (PABP) as a protein interacting with the human iNOS 3'-UTR. Downregulation of PABP expression by RNA interference resulted in a marked reduction of cytokine-induced iNOS mRNA expression without changes in the expression of mRNAs coding for the major subunit of the RNA polymerase II (Pol 2A) or β2-microglobuline (β2M). Along with the mRNA also iNOS protein expression was reduced by siPABP-treatment, whereas in the same cells protein expression of STAT-1α, NF-κB p65, or GAPDH was not altered. Reporter gene analyses showed no change of the inducibility of the human 16kb iNOS promoter in siPABP cells. In contrast, the siPABP-mediated decline of iNOS expression correlated with a reduction in the stability of the iNOS mRNA. As the stability of the Pol 2A and β2M mRNA was not changed, siPABP-treatment seems to have a specific effect on iNOS mRNA decay. UV-crosslinking experiments revealed that PABP interacts with one binding site in the 5'-UTR and two different binding sites in the 3'-UTR of the human iNOS mRNA. Mutation or deletion of the binding site in the 5'-UTR but not in the 3'-UTR reduced luciferase expression in DLD-1 cells transfected with iNOS-5'-UTR or iNOS-3'-UTR luciferase reporter constructs. In summary, our data demonstrate that PABP by binding to specific sequence elements in the 5'-UTR post-transcriptionally enhances human iNOS mRNA stability and thereby iNOS expression.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.niox.2013.05.002DOI Listing
September 2013

Role of SIRT1 and FOXO factors in eNOS transcriptional activation by resveratrol.

Nitric Oxide 2013 Aug 10;32:29-35. Epub 2013 Apr 10.

Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany.

Many of the cardiovascular protective effects of resveratrol are attributable to an enhanced production of nitric oxide (NO) by the endothelial NO synthase (eNOS). Resveratrol has been shown to enhance eNOS gene expression as well as eNOS enzymatic activity. The aim of the present study was to analyze the molecular mechanisms of eNOS transcriptional activation by resveratrol. Treatment of human EA.hy 926 endothelial cells with resveratrol led to a concentration-dependent upregulation of eNOS expression. In luciferase reporter gene assay, resveratrol enhanced the activity of human eNOS promoter fragments (3500, 1600, 633 and 263bp in length, respectively), indicating that the proximal promoter region is required for resveratrol-induced eNOS transcriptional activation. Knockdown of the NAD(+)-dependent protein deacetylase sirtuin 1 (SIRT1) by siRNA prevented the upregulation of eNOS mRNA and protein by resveratrol. Forkhead box O (FOXO) transcription factors are established downstream targets of SIRT1. siRNA-mediated knockdown of FOXO1 and FOXO3a abolished the effect of resveratrol on eNOS expression, indicating the involvement of these factors. Resveratrol treatment enhanced the expression of FOXO1 and FOXO3a in EA.hy 926 cells. Reporter gene assay using promoter containing forkhead response elements showed increased FOXO factor activity by resveratrol. In electrophoretic mobility shift assay, the enhanced binding of nuclear proteins to the eNOS promoter regions by resveratrol could be blocked by antibodies against FOXO1 and FOXO3a. In conclusion, resveratrol enhances the expression and activity of FOXO transcription factors. The SIRT1/FOXO factor axis is involved in resveratrol-induced eNOS transcriptional activation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.niox.2013.04.001DOI Listing
August 2013

Human inducible nitric oxide synthase (iNOS) expression depends on chromosome region maintenance 1 (CRM1)- and eukaryotic translation initiation factor 4E (elF4E)-mediated nucleocytoplasmic mRNA transport.

Nitric Oxide 2013 Apr 5;30:49-59. Epub 2013 Mar 5.

Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, D 55101 Mainz, Germany.

Human inducible nitric oxide synthase (iNOS) is regulated on the expressional level mostly by post-transcriptional mechanisms modulating the mRNA stability. Another important step in the control of eukaryotic gene expression is the nucleocytoplasmic mRNA transport. Most cellular mRNAs are exported via the TAP/Nxt complex of proteins. However, some mRNAs are transported by a different mechanism involving the nuclear export receptor CRM1. Treatment of DLD-1 cells with the CRM1 inhibitor leptomycin B (LMB) or anti-CRM1 siRNAs reduced cytokine-induced iNOS expression. We could demonstrate that the iNOS mRNA is exported from the nucleus in a CRM1-dependent manner. Since CRM1 itself does not possess any RNA binding affinity, an adapter protein is needed to mediate CRM1-dependent mRNA export. Western blot experiments showed that the eukaryotic translation initiation factor eIF4E is retained in the nucleus after LMB treatment. Blockade of eIF4E by ribavirin or overexpression of the promyelocytic leukemia protein (PML) decreased iNOS expression due to reduced iNOS mRNA export from the nucleus. Transfection experiments provide evidence that the 3'-untranslated region of the iNOS mRNA is involved in eIF4E-mediated iNOS mRNA transport. In summary, CRM1 and eIF4E seem to play an important role in the nucleocytoplasmic export of human iNOS mRNA.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.niox.2013.02.083DOI Listing
April 2013

Transcriptional regulation of Nox4 by histone deacetylases in human endothelial cells.

Basic Res Cardiol 2012 Sep 13;107(5):283. Epub 2012 Jul 13.

Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Obere Zahlbacher Strasse 67, Mainz, Germany.

Nox4 is a member of the NADPH oxidase family, which represents a major source of reactive oxygen species (ROS) in the vascular wall. Nox4-mediated ROS production mainly depends on the expression levels of the enzyme. The present study was aimed to investigate the mechanisms of Nox4 transcription regulation by histone deacetylases (HDAC). In human umbilical vein endothelial cells (HUVEC) and HUVEC-derived EA.hy 926 cells, treatment with the pan-HDAC inhibitor scriptaid led to a marked decrease in Nox4 mRNA expression. A similar down-regulation of Nox4 mRNA expression was observed by siRNA-mediated knockdown of HDAC3. HDAC inhibition in endothelial cells was associated with enhanced histone acetylation, increased chromatin accessibility in the human Nox4 promoter region, with no significant changes in DNA methylation. In addition, we provided evidence that c-Jun played an important role in controlling Nox4 transcription. Knockdown of c-Jun with siRNA led to a down-regulation of Nox4 mRNA expression. In response to scriptaid treatment, the binding of c-Jun to the Nox4 promoter region was reduced despite the open chromatin structure. In parallel, the binding of RNA polymerase IIa to the Nox4 promoter was significantly inhibited as well, which may explain the reduction in Nox4 transcription. In conclusion, HDAC inhibition decreases Nox4 transcription in human endothelial cells by preventing the binding of transcription factor(s) and polymerase(s) to the Nox4 promoter, most likely because of a hyperacetylation-mediated steric inhibition.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00395-012-0283-3DOI Listing
September 2012

The anti-inflammatory fungal compound (S)-curvularin reduces proinflammatory gene expression in an in vivo model of rheumatoid arthritis.

J Pharmacol Exp Ther 2012 Oct 5;343(1):106-14. Epub 2012 Jul 5.

Department of Pharmacology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.

In previous studies, we identified the fungal macrocyclic lactone (S)-curvularin (SC) as an anti-inflammatory agent using a screening system detecting inhibitors of the Janus kinase/signal transducer and activator of transcription pathway. The objective of the present study was to investigate whether SC is able to decrease proinflammatory gene expression in an in vivo model of a chronic inflammatory disease. Therefore, the effects of SC and dexamethasone were compared in the model of collagen-induced arthritis (CIA) in mice. Total genomic microarray analyses were performed to identify SC target genes. In addition, in human C28/I2 chondrocytes and MonoMac6 monocytes, the effect of SC on proinflammatory gene expression was tested at the mRNA and protein level. In the CIA model, SC markedly reduced the expression of a number of proinflammatory cytokines and chemokines involved in the pathogenesis of CIA as well as human rheumatoid arthritis (RA). In almost all cases, the effects of SC were comparable with those of dexamethasone. In microarray analyses, we identified additional new therapeutic targets of SC. Some of them, such as S100A8, myeloperoxidase, or cathelicidin, an antimicrobial peptide, are known to be implicated in pathophysiological processes in RA. Similar anti-inflammatory effects of SC were also observed in human C28/I2 chondrocyte cells, which are resistant to glucocorticoid treatment. These data indicate that SC and glucocorticoid effects are mediated via independent signal transduction pathways. In summary, we demonstrate that SC is a new effective anti-inflammatory compound that may serve as a lead compound for the development of new drugs for the therapy of chronic inflammatory diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.112.192047DOI Listing
October 2012

Chronic therapy with isosorbide-5-mononitrate causes endothelial dysfunction, oxidative stress, and a marked increase in vascular endothelin-1 expression.

Eur Heart J 2013 Nov 3;34(41):3206-16. Epub 2012 May 3.

2nd Medical Clinic, Department of Cardiology, Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany.

Aims: Isosorbide-5-mononitrate (ISMN) is one of the most frequently used compounds in the treatment of coronary artery disease predominantly in the USA. However, ISMN was reported to induce endothelial dysfunction, which was corrected by vitamin C pointing to a crucial role of reactive oxygen species (ROS) in causing this phenomenon. We sought to elucidate the mechanism how ISMN causes endothelial dysfunction and oxidative stress in vascular tissue.

Methods And Results: Male Wistar rats (n= 69 in total) were treated with ISMN (75 mg/kg/day) or placebo for 7 days. Endothelin (ET) expression was determined by immunohistochemistry in aortic sections. Isosorbide-5-mononitrate infusion caused significant endothelial dysfunction but no tolerance to ISMN itself, whereas ROS formation and nicotinamide adenine dinucleotidephosphate (NADPH) oxidase activity in the aorta, heart, and whole blood were increased. Isosorbide-5-mononitrate up-regulated the expression of NADPH subunits and caused uncoupling of the endothelial nitric oxide synthase (eNOS) likely due to a down-regulation of the tetrahydrobiopterin-synthesizing enzyme GTP-cyclohydrolase-1 and to S-glutathionylation of eNOS. The adverse effects of ISMN were improved in gp91phox knockout mice and normalized by bosentan in vivo/ex vivo treatment and suppressed by apocynin. In addition, a strong increase in the expression of ET within the endothelial cell layer and the adventitia was observed.

Conclusion: Chronic treatment with ISMN causes endothelial dysfunction and oxidative stress, predominantly by an ET-dependent activation of the vascular and phagocytic NADPH oxidase activity and NOS uncoupling. These findings may explain at least in part results from a retrospective analysis indicating increased mortality in post-infarct patients in response to long-term treatment with mononitrates.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/eurheartj/ehs100DOI Listing
November 2013

Heme oxygenase-1 induction and organic nitrate therapy: beneficial effects on endothelial dysfunction, nitrate tolerance, and vascular oxidative stress.

Int J Hypertens 2012 7;2012:842632. Epub 2012 Mar 7.

2nd Medical Clinic, Department of Cardiology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany.

Organic nitrates are a group of very effective anti-ischemic drugs. They are used for the treatment of patients with stable angina, acute myocardial infarction, and chronic congestive heart failure. A major therapeutic limitation inherent to organic nitrates is the development of tolerance, which occurs during chronic treatment with these agents, and this phenomenon is largely based on induction of oxidative stress with subsequent endothelial dysfunction. We therefore speculated that induction of heme oxygenase-1 (HO-1) could be an efficient strategy to overcome nitrate tolerance and the associated side effects. Indeed, we found that hemin cotreatment prevented the development of nitrate tolerance and vascular oxidative stress in response to chronic nitroglycerin therapy. Vice versa, pentaerithrityl tetranitrate (PETN), a nitrate that was previously reported to be devoid of adverse side effects, displayed tolerance and oxidative stress when the HO-1 pathway was blocked pharmacologically or genetically by using HO-1(+/-) mice. Recently, we identified activation of Nrf2 and HuR as a principle mechanism of HO-1 induction by PETN. With the present paper, we present and discuss our recent and previous findings on the role of HO-1 for the prevention of nitroglycerin-induced nitrate tolerance and for the beneficial effects of PETN therapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1155/2012/842632DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3312327PMC
August 2012

Chronic inflammatory cardiomyopathy of interferon γ-overexpressing transgenic mice is mediated by tumor necrosis factor-α.

Am J Pathol 2012 Jan 1;180(1):73-81. Epub 2011 Nov 1.

Department of Laboratory Medicine, Robert Bosch-Hospital, Stuttgart, Germany.

We recently described a model of inflammatory cardiomyopathy in interferon (IFN)-γ overexpressing transgenic mice stably circulating IFN-γ in the serum referred to as SAP--IFN-γ mice. SAP-IFN-γ transgenic mice show cardiac infiltration by mononuclear leukocytes, culminating in dilated cardiomyopathy characterized by an increase of left ventricular end diastolic diameter and reduction of fractional shortening. We hypothesized that the pathological mechanism underlying SAP-IFN-γ cardiomyopathy might be mediated by (auto)immune processes or tumor necrosis factor (TNF)-α synthesis from IFN-γ-activated macrophages. To verify these hypotheses, we crossed SAP-IFN-γ transgenic mice with immunodeficient Rag1(-/-) or TNF-α(-/-) knockout mice and analyzed the cardiac phenotype of the resulting double-mutant offspring. Immunodeficient Rag1(-/-) SAP-IFN-γ mice had a decreased impaired life span and intensive cardiac inflammatory reactions, showing that the cardiotoxic IFN-γ effect operative in SAP-IFN-γ mice was not mediated by an adaptive immune mechanism. SAP-IFN-γ TNF-α(-/-) hearts showed virtually no histopathological alterations, a significant reduction of cardiac infiltration by CD11c(+) dendritic cells and F4/80(+) macrophages, almost complete normalization of cardiac troponin T levels in serum and of left ventricular end diastolic diameter and fractional shortening, and a dramatic increase of life span, compared with SAP-IFN-γ transgenic controls. Thus, myocarditis and cardiomyopathy developing in IFN-γ-overexpressing transgenic mice is, to a significant degree, mediated by TNF-α. TNF-α-mediated cardiotoxicity in SAP-IFN-γ transgenic mice is independent of changes of apoptosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajpath.2011.09.006DOI Listing
January 2012

Vascular dysfunction in experimental diabetes is improved by pentaerithrityl tetranitrate but not isosorbide-5-mononitrate therapy.

Diabetes 2011 Oct 15;60(10):2608-16. Epub 2011 Aug 15.

2nd Medical Clinic, Department of Cardiology, Medical Centerof the Johannes Gutenberg University, Mainz, Germany.

Objective: Diabetes is associated with vascular oxidative stress, activation of NADPH oxidase, and uncoupling of nitric oxide (NO) synthase (endothelial NO synthase [eNOS]). Pentaerithrityl tetranitrate (PETN) is an organic nitrate with potent antioxidant properties via induction of heme oxygenase-1 (HO-1). We tested whether treatment with PETN improves vascular dysfunction in the setting of experimental diabetes.

Research Design And Methods: After induction of hyperglycemia by streptozotocin (STZ) injection (60 mg/kg i.v.), PETN (15 mg/kg/day p.o.) or isosorbide-5-mononitrate (ISMN; 75 mg/kg/day p.o.) was fed to Wistar rats for 7 weeks. Oxidative stress was assessed by optical methods and oxidative protein modifications, vascular function was determined by isometric tension recordings, protein expression was measured by Western blotting, RNA expression was assessed by quantitative RT-PCR, and HO-1 promoter activity in stable transfected cells was determined by luciferase assays.

Results: PETN, but not ISMN, improved endothelial dysfunction. NADPH oxidase and serum xanthine oxidase activities were significantly reduced by PETN but not by ISMN. Both organic nitrates had minor effects on the expression of NADPH oxidase subunits, eNOS and dihydrofolate reductase (Western blotting). PETN, but not ISMN, normalized the expression of GTP cyclohydrolase-1, extracellular superoxide dismutase, and S-glutathionylation of eNOS, thereby preventing eNOS uncoupling. The expression of the antioxidant enzyme, HO-1, was increased by STZ treatment and further upregulated by PETN, but not ISMN, via activation of the transcription factor NRF2.

Conclusions: In contrast to ISMN, the organic nitrate, PETN, improves endothelial dysfunction in diabetes by preventing eNOS uncoupling and NADPH oxidase activation, thereby reducing oxidative stress. Thus, PETN therapy may be suited to treat patients with cardiovascular complications of diabetes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2337/db10-1395DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3178293PMC
October 2011

Regulation of human mitochondrial aldehyde dehydrogenase (ALDH-2) activity by electrophiles in vitro.

J Biol Chem 2011 Mar 20;286(11):8893-900. Epub 2011 Jan 20.

II. Medizinische Klinik, Molekulare Kardiologie, Universitätsmedizin der Johannes Gutenberg-Universität Mainz, 55101 Mainz, Germany.

Recently, mitochondrial aldehyde dehydrogenase (ALDH-2) was reported to reduce ischemic damage in an experimental myocardial infarction model. ALDH-2 activity is redox-sensitive. Therefore, we here compared effects of various electrophiles (organic nitrates, reactive fatty acid metabolites, or oxidants) on the activity of ALDH-2 with special emphasis on organic nitrate-induced inactivation of the enzyme, the biochemical correlate of nitrate tolerance. Recombinant human ALDH-2 was overexpressed in Escherichia coli; activity was determined with an HPLC-based assay, and reactive oxygen and nitrogen species formation was determined by chemiluminescence, fluorescence, protein tyrosine nitration, and diaminonaphthalene nitrosation. The organic nitrate glyceryl trinitrate caused a severe concentration-dependent decrease in enzyme activity, whereas incubation with pentaerythritol tetranitrate had only minor effects. 4-Hydroxynonenal, an oxidized prostaglandin J(2), and 9- or 10-nitrooleate caused a significant inhibition of ALDH-2 activity, which was improved in the presence of Mg(2+) and Ca(2+). Hydrogen peroxide and NO generation caused only minor inhibition of ALDH-2 activity, whereas peroxynitrite generation or bolus additions lead to severe impairment of the enzymatic activity, which was prevented by the thioredoxin/thioredoxin reductase (Trx/TrxR) system. In the presence of glyceryl trinitrate and to a lesser extent pentaerythritol tetranitrate, ALDH-2 may be switched to a peroxynitrite synthase. Electrophiles of different nature potently regulate the enzymatic activity of ALDH-2 and thereby may influence the resistance to ischemic damage in response to myocardial infarction. The Trx/TrxR system may play an important role in this process because it not only prevents inhibition of ALDH-2 but is also inhibited by the ALDH-2 substrate 4-hydroxynonenal.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M110.190017DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058968PMC
March 2011

Induction of tolerogenic lung CD4+ T cells by local treatment with a pSTAT-3 and pSTAT-5 inhibitor ameliorated experimental allergic asthma.

Int Immunol 2011 Jan 6;23(1):1-15. Epub 2010 Dec 6.

Laboratory of Cellular and Molecular Immunology of Lung, Institute of Molecular Medicine, Universitätsmedizin Mainz, 55131 Mainz, Germany.

Signal transducer and activator of transcription (STAT)-3 inhibitors play an important role in regulating immune responses. Galiellalactone (GL) is a fungal secondary metabolite known to interfere with the binding of phosphorylated signal transducer and activator of transcription (pSTAT)-3 as well of pSTAT-6 dimers to their target DNA in vitro. Intra nasal delivery of 50 μg GL into the lung of naive Balb/c mice induced FoxP3 expression locally and IL-10 production and IL-12p40 in RNA expression in the airways in vivo. In a murine model of allergic asthma, GL significantly suppressed the cardinal features of asthma, such as airway hyperresponsiveness, eosinophilia and mucus production, after sensitization and subsequent challenge with ovalbumin (OVA). These changes resulted in induction of IL-12p70 and IL-10 production by lung CD11c(+) dendritic cells (DCs) accompanied by an increase of IL-3 receptor α chain and indoleamine-2,3-dioxygenase expression in these cells. Furthermore, GL inhibited IL-4 production in T-bet-deficient CD4(+) T cells and down-regulated the suppressor of cytokine signaling-3 (SOCS-3), also in the absence of STAT-3 in T cells, in the lung in a murine model of asthma. In addition, we found reduced amounts of pSTAT-5 in the lung of GL-treated mice that correlated with decreased release of IL-2 by lung OVA-specific CD4(+) T cells after treatment with GL in vitro also in the absence of T-bet. Thus, GL treatment in vivo and in vitro emerges as a novel therapeutic approach for allergic asthma by modulating lung DC phenotype and function resulting in a protective response via CD4(+)FoxP3(+) regulatory T cells locally.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/intimm/dxq451DOI Listing
January 2011

Regulation of the expression of inducible nitric oxide synthase.

Nitric Oxide 2010 Sep 8;23(2):75-93. Epub 2010 May 8.

Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, D-55101 Mainz, Germany.

Nitric oxide (NO) generated by the inducible isoform of nitric oxide synthase (iNOS) is involved in complex immunomodulatory and antitumoral mechanisms and has been described to have multiple beneficial microbicidal, antiviral and antiparasital effects. However, dysfunctional induction of iNOS expression seems to be involved in the pathophysiology of several human diseases. Therefore iNOS has to be regulated very tightly. Modulation of expression, on both the transcriptional and post-transcriptional level, is the major regulation mechanism for iNOS. Pathways resulting in the induction of iNOS expression vary in different cells or species. Activation of the transcription factors NF-kappaB and STAT-1alpha and thereby activation of the iNOS promoter seems to be an essential step for the iNOS induction in most human cells. However, at least in the human system, also post-transcriptional mechanisms involving a complex network of RNA-binding proteins build up by AUF1, HuR, KSRP, PTB and TTP is critically involved in the regulation of iNOS expression. Recent data also implicate regulation of iNOS expression by non-coding RNAs (ncRNAs).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.niox.2010.04.007DOI Listing
September 2010

The RNA binding protein tristetraprolin influences the activation state of murine dendritic cells.

Mol Immunol 2010 Feb 28;47(5):1161-70. Epub 2009 Nov 28.

Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.

Dendritic cells (DCs) serve to maintain peripheral tolerance under steady state conditions. Upon triggering by activation signals they initiate strong immune responses. The activation of DCs is accompanied by a rapid upregulation of proinflammatory cytokines, which were shown in other cell types to be regulated by mechanisms at the transcriptional and posttranscriptional level. Tristetraprolin (TTP), an important RNA binding protein, is involved in the regulation of mRNA stability of such cytokines. In this study we analyzed the significance of TTP for mouse DCs, which were derived from TTP(-/-) and WT bone marrow progenitor cells (BM-DCs). Unstimulated BM-DCs of TTP(-/-) mice expressed lower levels of mRNAs encoding the costimulatory molecules CD40 and CD86 and surprisingly also the canonical TTP targets TNF-alpha and IL-10 as compared with WT DCs. On the protein level, both DC populations expressed comparable amounts of CD80 and CD86 and of either cytokine, but TTP(-/-) DCs expressed less MHCII than WT DCs. On the other hand, TTP(-/-) DCs displayed elevated expression of other TTP target mRNAs like IL-1beta, c-fos and Mkp-1. Stimulation of BM-DCs of either genotype with lipopolysaccharide resulted in a rapid upregulation to a comparable extent of all molecules monitored so far, except for c-fos mRNA. Subsequent mRNA decay analysis revealed gene-specific differences in mRNA stability, which was influenced by the presence of TTP and the activation state of the DCs. Unstimulated TTP(-/-) DCs exerted a markedly lower allogeneic T cell stimulatory potential than WT DCs. Moreover, TTP(-/-) DCs induced an altered cytokine pattern in cocultures of DCs and T cells. However, allogeneic T cells primed by unstimulated DCs of either genotype were equally refractory to restimulation and suppressed the proliferation of naive T cells to the same extent. Thus, the findings of this study lend support to the interpretation that without external stimulation antigen presenting activity in DCs in the presence of TTP is more pronounced than in its absence and that posttranscriptional regulation contributes to the control of gene expression in DCs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molimm.2009.11.002DOI Listing
February 2010

Transcriptional and post-transcriptional regulation of iNOS expression in human chondrocytes.

Biochem Pharmacol 2010 Mar 23;79(5):722-32. Epub 2009 Oct 23.

Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany.

Chondrocytes are important for the development and maintenance of articular cartilage. However, both in osteoarthritis (OA) and rheumatoid arthritis (RA) chondrocytes are involved in the process of cartilage degradation and synthesize important immunomodulatory mediators, including nitric oxide (NO) generated by the inducible NO synthase (iNOS). To uncover the role of iNOS in the pathomechanisms of OA and RA, we analyzed the regulation of iNOS expression using immortalized human chondrocytes as a reproducible model. In C-28/I2 chondrocytes, iNOS expression was associated with the expression of the chondrocyte phenotype. Peak induction by a cytokine cocktail occurred between 6 and 8h and declined by 24h. Inhibition of p38MAPK, NF-kappaB and the JAK2-STAT-1alpha pathways resulted in a reduction of iNOS expression. In contrast to other cell types, the cytokine-mediated induction of the human iNOS promoter paralleled the induction rate of the iNOS mRNA expression in C-28/I2 chondrocytes. However, in addition post-transcriptional regulation of iNOS expression by the RNA binding protein KSRP seems to operate in these cells. As seen in other chondrocyte models, glucocorticoids were not able to inhibit cytokine-induced iNOS expression in C-28/I2 cells, due to the lack of the glucocorticoid receptor mRNA expression. In this model of glucocorticoid-resistance, the new fungal anti-inflammatory compound S-curvularin was able to inhibit cytokine-induced iNOS expression and iNOS-dependent NO-production. In summary, we demonstrate for the first time that differentiated human immortalized C-28/I2 chondrocytes are a representative cell culture model to investigate iNOS gene expression in human joint diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcp.2009.10.012DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3951130PMC
March 2010