Publications by authors named "Haoyun Fang"

10 Publications

  • Page 1 of 1

Proteomic dissection of large extracellular vesicle surfaceome unravels interactive surface platform.

J Extracell Vesicles 2021 11;10(13):e12164

Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, 3004, Australia.

The extracellular vesicle (EV) surface proteome (surfaceome) acts as a fundamental signalling gateway by bridging intra- and extracellular signalling networks, dictates EVs' capacity to communicate and interact with their environment, and is a source of potential disease biomarkers and therapeutic targets. However, our understanding of surface protein composition of large EVs (L-EVs, 100-800 nm, mean 310 nm, ATP5F1A, ATP5F1B, DHX9, GOT2, HSPA5, HSPD1, MDH2, STOML2), a major EV-subtype that are distinct from small EVs (S-EVs, 30-150 nm, mean 110 nm, CD44, CD63, CD81, CD82, CD9, PDCD6IP, SDCBP, TSG101) remains limited. Using a membrane impermeant derivative of biotin to capture surface proteins coupled to mass spectrometry analysis, we show that out of 4143 proteins identified in density-gradient purified L-EVs (1.07-1.11 g/mL, from multiple cancer cell lines), 961 proteins are surface accessible. The surface molecular diversity of L-EVs include (i) bona fide plasma membrane anchored proteins (cluster of differentiation, transporters, receptors and GPI anchored proteins implicated in cell-cell and cell-ECM interactions); and (ii) membrane surface-associated proteins (that are released by divalent ion chelator EDTA) implicated in actin cytoskeleton regulation, junction organization, glycolysis and platelet activation. Ligand-receptor analysis of L-EV surfaceome (e.g., ITGAV/ITGB1) uncovered interactome spanning 172 experimentally verified cognate binding partners (e.g., ANGPTL3, PLG, and VTN) with highest tissue enrichment for liver. Assessment of biotin inaccessible L-EV proteome revealed enrichment for proteins belonging to COPI/II-coated ER/Golgi-derived vesicles and mitochondria. Additionally, despite common surface proteins identified in L-EVs and S-EVs, our data reveals surfaceome heterogeneity between the two EV-subtype. Collectively, our study provides critical insights into diverse proteins operating at the interactive platform of L-EVs and molecular leads for future studies seeking to decipher L-EV heterogeneity and function.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jev2.12164DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8612312PMC
November 2021

The proteomic architecture of schizophrenia iPSC-derived cerebral organoids reveals alterations in GWAS and neuronal development factors.

Transl Psychiatry 2021 10 19;11(1):541. Epub 2021 Oct 19.

Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA.

Schizophrenia (Scz) is a brain disorder that has a typical onset in early adulthood but otherwise maintains unknown disease origins. Unfortunately, little progress has been made in understanding the molecular mechanisms underlying neurodevelopment of Scz due to ethical and technical limitations in accessing developing human brain tissue. To overcome this challenge, we have previously utilized patient-derived Induced Pluripotent Stem Cells (iPSCs) to generate self-developing, self-maturating, and self-organizing 3D brain-like tissue known as cerebral organoids. As a continuation of this prior work, here we provide an architectural map of the developing Scz organoid proteome. Utilizing iPSCs from n = 25 human donors (n = 8 healthy Ctrl donors, and n = 17 Scz patients), we generated 3D cerebral organoids, employed 16-plex isobaric sample-barcoding chemistry, and simultaneously subjected samples to comprehensive high-throughput liquid-chromatography/mass-spectrometry (LC/MS) quantitative proteomics. Of 3,705 proteins identified by high-throughput proteomic profiling, we identified that just ~2.62% of the organoid global proteomic landscape was differentially regulated in Scz organoids. In sum, just 43 proteins were up-regulated and 54 were down-regulated in Scz patient-derived organoids. Notably, a range of neuronal factors were depleted in Scz organoids (e.g., MAP2, TUBB3, SV2A, GAP43, CRABP1, NCAM1 etc.). Based on global enrichment analysis, alterations in key pathways that regulate nervous system development (e.g., axonogenesis, axon development, axon guidance, morphogenesis pathways regulating neuronal differentiation, as well as substantia nigra development) were perturbed in Scz patient-derived organoids. We also identified prominent alterations in two novel GWAS factors, Pleiotrophin (PTN) and Podocalyxin (PODXL), in Scz organoids. In sum, this work serves as both a report and a resource that researchers can leverage to compare, contrast, or orthogonally validate Scz factors and pathways identified in observational clinical studies and other model systems.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41398-021-01664-5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8526592PMC
October 2021

Neurodevelopmental signatures of narcotic and neuropsychiatric risk factors in 3D human-derived forebrain organoids.

Mol Psychiatry 2021 Jun 22. Epub 2021 Jun 22.

Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York City, NY, USA.

It is widely accepted that narcotic use during pregnancy and specific environmental factors (e.g., maternal immune activation and chronic stress) may increase risk of neuropsychiatric illness in offspring. However, little progress has been made in defining human-specific in utero neurodevelopmental pathology due to ethical and technical challenges associated with accessing human prenatal brain tissue. Here we utilized human induced pluripotent stem cells (hiPSCs) to generate reproducible organoids that recapitulate dorsal forebrain development including early corticogenesis. We systemically exposed organoid samples to chemically defined "enviromimetic" compounds to examine the developmental effects of various narcotic and neuropsychiatric-related risk factors within tissue of human origin. In tandem experiments conducted in parallel, we modeled exposure to opiates (μ-opioid agonist endomorphin), cannabinoids (WIN 55,212-2), alcohol (ethanol), smoking (nicotine), chronic stress (human cortisol), and maternal immune activation (human Interleukin-17a; IL17a). Human-derived dorsal forebrain organoids were consequently analyzed via an array of unbiased and high-throughput analytical approaches, including state-of-the-art TMT-16plex liquid chromatography/mass-spectrometry (LC/MS) proteomics, hybrid MS metabolomics, and flow cytometry panels to determine cell-cycle dynamics and rates of cell death. This pipeline subsequently revealed both common and unique proteome, reactome, and metabolome alterations as a consequence of enviromimetic modeling of narcotic use and neuropsychiatric-related risk factors in tissue of human origin. However, of our 6 treatment groups, human-derived organoids treated with the cannabinoid agonist WIN 55,212-2 exhibited the least convergence of all groups. Single-cell analysis revealed that WIN 55,212-2 increased DNA fragmentation, an indicator of apoptosis, in human-derived dorsal forebrain organoids. We subsequently confirmed induction of DNA damage and apoptosis by WIN 55,212-2 within 3D human-derived dorsal forebrain organoids. Lastly, in a BrdU pulse-chase neocortical neurogenesis paradigm, we identified that WIN 55,212-2 was the only enviromimetic treatment to disrupt newborn neuron numbers within human-derived dorsal forebrain organoids. Cumulatively this study serves as both a resource and foundation from which human 3D biologics can be used to resolve the non-genomic effects of neuropsychiatric risk factors under controlled laboratory conditions. While synthetic cannabinoids can differ from naturally occurring compounds in their effects, our data nonetheless suggests that exposure to WIN 55,212-2 elicits neurotoxicity within human-derived developing forebrain tissue. These human-derived data therefore support the long-standing belief that maternal use of cannabinoids may require caution so to avoid any potential neurodevelopmental effects upon developing offspring in utero.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41380-021-01189-9DOI Listing
June 2021

Impact of chemically defined culture media formulations on extracellular vesicle production by amniotic epithelial cells.

Proteomics 2021 07 22;21(13-14):e2000080. Epub 2021 Jun 22.

The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.

The therapeutic properties of cell derived extracellular vesicles (EVs) make them promising cell-free alternative to regenerative medicine. However, clinical translation of this technology relies on the ability to manufacture EVs in a scalable, reproducible, and cGMP-compliant manner. To generate EVs in sufficient quantity, a critical step is the selection and development of culture media, where differences in formulation may influence the EV manufacturing process. In this study, we used human amniotic epithelial cells (hAECs) as a model system to explore the effect of different formulations of chemically defined, commercially sourced media on EV production. Here, we determined that cell viability and proliferation rate are not reliable quality indicators for EV manufacturing. The levels of tetraspanins and epitope makers of EVs were significantly impacted by culture media formulations. Mass spectrometry-based proteomic profiling revealed proteome composition of hAEC-EVs and the influence of media formulations on composition of EV proteome. This study has revealed critical aspects including cell viability and proliferation rate, EV yield, and tetraspanins, surface epitopes and proteome composition of EVs influenced by media formulations, and further insight into standardised EV production culture media that should be considered in clinical-grade scalable EV manufacture for generation of therapeutic EVs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/pmic.202000080DOI Listing
July 2021

Cancer stem cell marker DCLK1 reprograms small extracellular vesicles toward migratory phenotype in gastric cancer cells.

Proteomics 2021 07 28;21(13-14):e2000098. Epub 2021 May 28.

Cancer Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia.

Doublecortin-like kinase 1 (DCLK1) is a putative cancer stem cell marker, a promising diagnostic and prognostic maker for malignant tumors and a proposed driver gene for gastric cancer (GC). DCLK1 overexpression in a majority of solid cancers correlates with lymph node metastases, advanced disease and overall poor-prognosis. In cancer cells, DCLK1 expression has been shown to promote epithelial-to-mesenchymal transition (EMT), driving disruption of cell-cell adhesion, cell migration and invasion. Here, we report that DCLK1 influences small extracellular vesicle (sEV/exosome) biogenesis in a kinase-dependent manner. sEVs isolated from DCLK1 overexpressing human GC cell line MKN1 (MKN1 -sEVs), promote the migration of parental (non-transfected) MKN1 cells (MKN1 ). Quantitative proteome analysis of MKN1 -sEVs revealed enrichment in migratory and adhesion regulators (STRAP, CORO1B, BCAM, COL3A, CCN1) in comparison to MKN1 -sEVs. Moreover, using DCLK1-IN-1, a specific small molecule inhibitor of DCLK1, we reversed the increase in sEV size and concentration in contrast to other EV subtypes, as well as kinase-dependent cargo selection of proteins involved in EV biogenesis (KTN1, CHMP1A, MYO1G) and migration and adhesion processes (STRAP, CCN1). Our findings highlight a specific role of DCLK1-kinase dependent cargo selection for sEVs and shed new light on its role as a regulator of signaling in gastric tumorigenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/pmic.202000098DOI Listing
July 2021

Proteome characterisation of extracellular vesicles isolated from heart.

Proteomics 2021 07 6;21(13-14):e2100026. Epub 2021 May 6.

Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria, Australia.

Cardiac intercellular communication is critical for heart function and often dysregulated in cardiovascular diseases. While cardiac extracellular vesicles (cEVs) are emerging mediators of signalling, their isolation remains a technical challenge hindering our understanding of cEV protein composition. Here, we utilised Langendorff-collagenase-based enzymatic perfusion and differential centrifugation to isolate cEVs from mouse heart (yield 3-6 μg/heart). cEVs are ∼200 nm, express classical EV markers (Cd63/81/9 , Tsg101 , Pdcd6ip/Alix ), and are depleted of blood (Alb/Fga/Hba) and cardiac damage markers (Mb, Tnnt2, Ldhb). Comparison with mechanically-derived EVs revealed greater detection of EV markers and decreased cardiac damage contaminants. Mass spectrometry-based proteomic profiling revealed 1721 proteins in cEVs, implicated in proteasomal and autophagic proteostasis, glycolysis, and fatty acid metabolism; essential functions often disrupted in cardiac pathologies. There was striking enrichment of 942 proteins in cEVs compared to mouse heart tissue - implicated in EV biogenesis, antioxidant activity, and lipid transport, suggesting active cargo selection and specialised function. Interestingly, cEVs contain marker proteins for cardiomyocytes, cardiac progenitors, B-cells, T-cells, macrophages, smooth muscle cells, endothelial cells, and cardiac fibroblasts, suggesting diverse cellular origin. We present a method of cEV isolation and provide insight into potential functions, enabling future studies into EV roles in cardiac physiology and disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/pmic.202100026DOI Listing
July 2021

Proteomic profiling of human uterine extracellular vesicles reveal dynamic regulation of key players of embryo implantation and fertility during menstrual cycle.

Proteomics 2021 07 19;21(13-14):e2000211. Epub 2021 Mar 19.

Baker Heart and Diabetes Institute, Molecular Proteomics, Melbourne, Victoria, Australia.

Endometrial extracellular vesicles (EVs) are emerging as important players in reproductive biology. However, how their proteome is regulated throughout the menstrual cycle is not known. Such information can provide novel insights into biological processes critical for embryo development, implantation, and successful pregnancy. Using mass spectrometry-based quantitative proteomics, we show that small EVs (sEVs) isolated from uterine lavage of fertile women (UL-sEV), compared to infertile women, are laden with proteins implicated in antioxidant activity (SOD1, GSTO1, MPO, CAT). Functionally, sEVs derived from endometrial cells enhance antioxidant function in trophectoderm cells. Moreover, there was striking enrichment of invasion-related proteins (LGALS1/3, S100A4/11) in fertile UL-sEVs in the secretory (estrogen plus progesterone-driven, EP) versus proliferative (estrogen-driven, E) phase, with several players downregulated in infertile UL-sEVs. Consistent with this, sEVs from EP- versus E-primed endometrial epithelial cells promote invasion of trophectoderm cells. Interestingly, UL-sEVs from fertile versus infertile women carry known players/predictors of embryo implantation (PRDX2, IDHC), endometrial receptivity (S100A4, FGB, SERPING1, CLU, ANXA2), and implantation success (CAT, YWHAE, PPIA), highlighting their potential to inform regarding endometrial status/pregnancy outcomes. Thus, this study provides novel insights into proteome reprograming of sEVs and soluble secretome in uterine fluid, with potential to enhance embryo implantation and hence fertility.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/pmic.202000211DOI Listing
July 2021

Human myeloma cell- and plasma-derived extracellular vesicles contribute to functional regulation of stromal cells.

Proteomics 2021 07 5;21(13-14):e2000119. Epub 2021 Mar 5.

Myeloma Research Group, Australian Centre for Blood Diseases, Monash University/Alfred Health, Melbourne, Victoria, Australia.

Circulating small extracellular vesicles (sEV) represent promising non-invasive biomarkers that may aid in the diagnosis and risk-stratification of multiple myeloma (MM), an incurable blood cancer. Here, we comprehensively isolated and characterized sEV from human MM cell lines (HMCL) and patient-derived plasma (psEV) by specific EV-marker enrichment and morphology. Importantly, we demonstrate that HMCL-sEV are readily internalised by stromal cells to functionally modulate proliferation. psEV were isolated using various commercial approaches and pre-analytical conditions (collection tube types, storage conditions) assessed for sEV yield and marker enrichment. Functionally, MM-psEV was shown to regulate stromal cell proliferation and migration. In turn, pre-educated stromal cells favour HMCL adhesion. psEV isolated from patients with both pre-malignant plasma cell disorders (monoclonal gammopathy of undetermined significance [MGUS]; smouldering MM [SMM]) and MM have a similar ability to promote cell migration and adhesion, suggesting a role for both malignant and pre-malignant sEV in disease progression. Proteomic profiling of MM-psEV (305 proteins) revealed enrichment of oncogenic factors implicated in cell migration and adhesion, in comparison to non-disease psEV. This study describes a protocol to generate morphologically-intact and biologically functional sEV capable of mediating the regulation of stromal cells, and a model for the characterization of tumour-stromal cross-talk by sEV in MM.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/pmic.202000119DOI Listing
July 2021

A Protocol for Isolation, Purification, Characterization, and Functional Dissection of Exosomes.

Methods Mol Biol 2021 ;2261:105-149

Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.

Extracellular vesicles (EVs) are membrane-enclosed vesicles released by cells. They carry proteins, nucleic acids, and metabolites which can be transferred to a recipient cell, locally or at a distance, to elicit a functional response. Since their discovery over 30 years ago, the functional repertoire of EVs in both physiological (e.g., organ morphogenesis, embryo implantation) and pathological (e.g., cancer, neurodegeneration) conditions has cemented their crucial role in intercellular communication. Moreover, because the cargo encapsulated within circulating EVs remains protected from degradation, their diagnostic as well as therapeutic (such as drug delivery tool) applications have garnered vested interest. Global efforts have been made to purify EV subtypes from biological fluids and in vitro cell culture media using a variety of strategies and techniques, with a major focus on EVs of endocytic origin called exosomes (30-150 nm in size). Given that the secretome comprises of soluble secreted proteins, protein aggregates, RNA granules, and EV subtypes (such as exosomes, shed microvesicles, apoptotic bodies), it is imperative to purify exosomes to homogeneity if we are to perform biochemical and biophysical characterization and, importantly, functional dissection. Besides understanding the composition of EV subtypes, defining molecular bias of how they reprogram target cells also remains of paramount importance in this area of active research. Here, we outline a systematic "how to" protocol (along with useful insights/tips) to obtain highly purified exosomes and perform their biophysical and biochemical characterization. This protocol employs a mass spectrometry-based proteomics approach to characterize the protein composition of exosomes. We also provide insights on different isolation strategies and their usefulness in various downstream applications. We outline protocols for lipophilic labeling of exosomes to study uptake by a recipient cell, investigating cellular reprogramming using proteomics and studying functional response to exosomes in the Transwell-Matrigel™ Invasion assay.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-1186-9_9DOI Listing
March 2021

Sustained subcutaneous delivery of secretome of human cardiac stem cells promotes cardiac repair following myocardial infarction.

Cardiovasc Res 2021 02;117(3):918-929

Departments of Medicine and Surgery, University of Melbourne, Melbourne, VIC, Australia.

Aims: To establish pre-clinical proof of concept that sustained subcutaneous delivery of the secretome of human cardiac stem cells (CSCs) can be achieved in vivo to produce significant cardioreparative outcomes in the setting of myocardial infarction.

Methods And Results: Rats were subjected to permanent ligation of left anterior descending coronary artery and randomized to receive subcutaneous implantation of TheraCyte devices containing either culture media as control or 1 × 106 human W8B2+ CSCs, immediately following myocardial ischaemia. At 4 weeks following myocardial infarction, rats treated with W8B2+ CSCs encapsulated within the TheraCyte device showed preserved left ventricular ejection fraction. The preservation of cardiac function was accompanied by reduced fibrotic scar tissue, interstitial fibrosis, cardiomyocyte hypertrophy, as well as increased myocardial vascular density. Histological analysis of the TheraCyte devices harvested at 4 weeks post-implantation demonstrated survival of human W8B2+ CSCs within the devices, and the outer membrane was highly vascularized by host blood vessels. Using CSCs expressing plasma membrane reporters, extracellular vesicles of W8B2+ CSCs were found to be transferred to the heart and other organs at 4 weeks post-implantation. Furthermore, mass spectrometry-based proteomic profiling of extracellular vesicles of W8B2+ CSCs identified proteins implicated in inflammation, immunoregulation, cell survival, angiogenesis, as well as tissue remodelling and fibrosis that could mediate the cardioreparative effects of secretome of human W8B2+ CSCs.

Conclusions: Subcutaneous implantation of TheraCyte devices encapsulating human W8B2+ CSCs attenuated adverse cardiac remodelling and preserved cardiac function following myocardial infarction. The TheraCyte device can be employed to deliver stem cells in a minimally invasive manner for effective secretome-based cardiac therapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/cvr/cvaa088DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7898942PMC
February 2021
-->