Publications by authors named "Hanna Maar"

13 Publications

  • Page 1 of 1

Low expression of CD24 is associated with poor survival in colorectal cancer.

Biochimie 2021 Oct 9. Epub 2021 Oct 9.

Faculty of Biology and Biotechnology, HSE University, Moscow, Russia; SRC Bioclinicum, Moscow, Russia. Electronic address:

In this study we analyzed expression of CD24 in a cohort of colorectal cancer patients using immunohistochemistry staining of CD24. We found a significant association between absence or low expression of CD24 (10% of membranous and 55% of cytoplasmic staining) and shortened patient survival. Protein localization played a crucial role in the prognosis: membranous form was the major and prognostic one in primary tumors, while cytoplasmic expression was elevated in liver metastases compared to the primary tumors and contained prognostic information. Then, using The Cancer Genome Atlas Colon Adenocarcinoma (TCGA-COAD) RNA-seq data, we showed that CD24 mRNA level was two-fold decreased in primary colorectal cancers compared to adjacent normal mucosa. Like the protein staining data, ten percent of patients with the lowest mRNA expression levels of CD24 in primary tumors had reduced survival compared to the ones with higher expression. To explain these findings mechanistically, shRNA-mediated CD24 knockdown was performed in HT-29 colorectal cancer cells. It resulted in the increase of cell migration in vitro, no changes in proliferation and apoptosis, and a slight decrease in cell invasion. As increased cell migration is a hallmark of metastasis formation, this finding corroborates the association of a decreased CD24 expression with poor prognosis. Differential gene expression analysis revealed upregulation of genes involved in cell migration in the group of patients with low CD24 expression, including integrin subunit α3 and α3, β3 subunits of laminin 332. Further co-expression analysis identified SPI1, STAT1 and IRF1 transcription factors as putative master-regulators in this group.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biochi.2021.10.004DOI Listing
October 2021

Integrin alpha-V is an important driver in pancreatic adenocarcinoma progression.

J Exp Clin Cancer Res 2021 Jun 26;40(1):214. Epub 2021 Jun 26.

Institute of Anatomy and Experimental Morphology, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany.

Background: Mesothelial E- and P-selectins substantially mediate the intraperitoneal spread of Pancreatic ductal adenocarcinoma (PDA) cells in xenograft models. In the absence of selectins in the host, the integrin subunit alpha-V (ITGAV, CD51) was upregulated in the remaining metastatic deposits. Here we present the first experimental study to investigate if ITGAV plays a functional role in PDA tumor growth and progression with a particular focus on intraperitoneal carcinomatosis.

Methods: Knockdown of ITGAV was generated using an RNA interference-mediated approach in two PDA cell lines. Tumor growth, intraperitoneal and distant metastasis were analyzed in a xenograft model. Cell lines were characterized in vitro. Gene expression of the xenograft tumors was analyzed. Patient samples were histologically classified and associations to survival were evaluated.

Results: The knockdown of ITGAV in PDA cells strongly reduces primary tumor growth, peritoneal carcinomatosis and spontaneous pulmonary metastasis. ITGAV activates latent TGF-β and thereby drives epithelial-mesenchymal transition. Combined depletion of ITGAV on the tumor cells and E- and P-selectins in the tumor-host synergistically almost abolishes intraperitoneal spread. Accordingly, high expression of ITGAV in PDA cells was associated with reduced survival in patients.

Conclusion: Combined depletion of ITGAV in PDA cells and E- and P-selectins in host mice massively suppresses intraperitoneal carcinomatosis of PDA cells xenografted into immunodeficient mice, confirming the hypothesis of a partly redundant adhesion cascade of metastasizing cancer cells. Our data strongly encourage developing novel therapeutic approaches for the combined targeting of E- and P-selectins and ITGAV in PDA.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13046-021-01946-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8235815PMC
June 2021

CHD1 loss negatively influences metastasis-free survival in R0-resected prostate cancer patients and promotes spontaneous metastasis in vivo.

Cancer Gene Ther 2021 Jan 7. Epub 2021 Jan 7.

Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.

The outcome of prostate cancer (PCa) patients is highly variable and depends on whether or not distant metastases occur. Multiple chromosomal deletions have been linked to early tumor marker PSA recurrence (biochemical relapse, BCR) after radical prostatectomy (RP), but their potential role for distant metastasis formation is largely unknown. Here, we specifically analyzed whether deletion of the tumor suppressor CHD1 (5q21) influences the post-surgical risk of distant metastasis and whether CHD1 loss directly contributes to metastasis formation in vivo. By considering >6800 patients we found that the CHD1 deletion negatively influences metastasis-free survival in R0 patients (HR: 2.32; 95% CI: 1.61, 3.33; p < 0.001) independent of preoperative PSA, pT stage, pN status, Gleason Score, and BCR. Moreover, CHD1 deletion predicts shortened BCR-free survival in pT2 patients and cancer-specific survival in all patients. In vivo, CHD1 loss increases spontaneous pulmonary metastasis formation in two distinct PCa models coupled with a higher number of multicellular colonies as compared to single-cell metastases. Transcriptome analyses revealed down-regulation of the PCa-specific metastasis suppressor and TGFβ signaling regulator PMEPA1 after CHD1 depletion in both tested PCa models. CHD1 loss increases the risk of postoperative metastasis in R0-resected PCa patients and promotes spontaneous metastasis formation in vivo.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41417-020-00288-zDOI Listing
January 2021

Xenograft-derived mRNA/miR and protein interaction networks of systemic dissemination in human prostate cancer.

Eur J Cancer 2020 09 1;137:93-107. Epub 2020 Aug 1.

Institute of Anatomy and Experimental Morphology, University Medical Center, Hamburg-Eppendorf, Martinistrasse 52, Hamburg, Germany.

Background: Distant metastasis formation is the major clinical problem in prostate cancer (PCa) and the underlying mechanisms remain poorly understood. Our aim was to identify novel molecules that functionally contribute to human PCa systemic dissemination based on unbiased approaches.

Methods: We compared mRNA, microRNA (miR) and protein expression levels in established human PCa xenograft tumours with high (PC-3), moderate (VCaP) or weak (DU-145) spontaneous micrometastatic potential. By focussing on those mRNAs, miRs and proteins that were differentially regulated among the xenograft groups and known to interact with each other we constructed dissemination-related mRNA/miR and protein/miR networks. Next, we clinically and functionally validated our findings.

Results: Besides known determinants of PCa progression and/or metastasis, our interaction networks include several novel candidates. We observed a clear role of epithelial-to-mesenchymal transition (EMT) pathways for PCa dissemination, which was additionally confirmed by an independent human PCa model (ARCAP-E/-M). Two converging nodes, CD46 (decreasing with metastatic potential) and DDX21 (increasing with metastatic potential), were used to test the clinical relevance of the networks. Intriguingly, both network nodes consistently added prognostic information for patients with PCa whereas CD46 loss predicted poor outcome independent of established parameters. Accordingly, depletion of CD46 in weakly metastatic PCa cells induced EMT-like properties in vitro and spontaneous micrometastasis formation in vivo.

Conclusions: The clinical and functional relevance of the dissemination-related interaction networks shown here could be successfully validated by proof-of-principle experiments. Therefore, we suggest a direct pro-metastatic, clinically relevant role for the multiple novel candidates included in this study; these should be further exploited by future studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejca.2020.06.025DOI Listing
September 2020

Systematic analysis of the human tumor cell binding to human vs. murine E- and P-selectin under static vs. dynamic conditions.

Glycobiology 2020 08;30(9):695-709

Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.

Endothelial E- and P-selectins promote metastasis formation by interacting with sialyl-Lewis X and A (sLeX/sLeA) on circulating tumor cells. This interaction precedes extravasation and can take place under dynamic and static conditions. Metastasis formation is often studied in xenograft models. However, it is unclear whether species differences exist in the ligand specificity of human (h) vs. murine (m) selectins and whether different ligands are functional under dynamic vs. static conditions. We systematically compared the h vs. m E- and P-selectin (ESel/PSel) binding of a range of human tumor cells under dynamic vs. static conditions. The tumor cells were categorized by their sLeA/X status (sLeA+/sLeX+, sLeA-/sLeX+ and sLeA-/sLeX-). The general biological nature of the tumor-selectin interaction was analyzed by applying several tumor cell treatments (anti-sLeA/X blockade, neuraminidase, pronase and inhibition of O/N-glycosylation). We observed remarkable differences in the static vs. dynamic interaction of tumor cells with h vs. m ESel/PSel depending on their sLeA/X status. The tumor cell treatments mostly affected either static or dynamic as well as either h- or m-selectin interaction. mESel showed a higher diversity of potential ligands than hESel. Inhibition of O-GalNAc-glycosylation also affected glycosphingolipid synthesis. Summarized, different ligands on human tumor cells are functional under static vs. dynamic conditions and for the interaction with human vs. murine ESel/PSel. Non-canonical selectin ligands lacking the sLeA/X glycan epitopes exist on human tumor cells. These findings have important implications for the current development of glycomimetic, antimetastatic drugs and encourage the development of immunodeficient mice with humanized selectins.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/glycob/cwaa019DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7443332PMC
August 2020

Modeling Spontaneous Bone Metastasis Formation of Solid Human Tumor Xenografts in Mice.

Cancers (Basel) 2020 Feb 7;12(2). Epub 2020 Feb 7.

Institute of Anatomy and Experimental Morphology, University Cancer Center Hamburg, 20251 Hamburg, Germany.

The majority of cancer-related deaths are due to hematogenous metastases, and the bone marrow (BM) represents one of the most frequent metastatic sites. To study BM metastasis formation in vivo, the most efficient approach is based on intracardiac injection of human tumor cells into immunodeficient mice. However, such a procedure circumvents the early steps of the metastatic cascade. Here we describe the development of xenograft mouse models (balb/c and severe combined immunodeficient (SCID)), in which BM metastases are spontaneously derived from subcutaneous (s.c.) primary tumors (PTs). As verified by histology, the described methodology including ex vivo bioluminescence imaging (BLI) even enabled the detection of micrometastases in the BM. Furthermore, we established sublines from xenograft primary tumors (PTs) and corresponding BM (BM) metastases using LAN-1 neuroblastoma xenografts as a first example. In vitro "metastasis" assays (viability, proliferation, transmigration, invasion, colony formation) partially indicated pro-metastatic features of the LAN-1-BM compared to the LAN-1-PT subline. Unexpectedly, after s.c. re-injection into mice, LAN-1-BM xenografts developed spontaneous BM metastases less frequently than LAN-1-PT xenografts. This study provides a novel methodologic approach for modelling the spontaneous metastatic cascade of human BM metastasis formation in mice. Moreover, our data indicate that putative bone-metastatic features get rapidly lost upon routine cell culture.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/cancers12020385DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7072706PMC
February 2020

Development and Characterization of a Spontaneously Metastatic Patient-Derived Xenograft Model of Human Prostate Cancer.

Sci Rep 2018 12 3;8(1):17535. Epub 2018 Dec 3.

Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.

Here we describe the establishment and characterization of an AR+, PSMA+, ERG+, PTEN, CHD1 patient-derived xenograft (PDX) model termed 'C5', which has been developed from a 60 years old patient suffering from castration-resistant prostate cancer (CRPC). The patient underwent radical prostatectomy, showed early tumor marker PSA recurrence and, one year after surgery, abiraterone resistance. Subcutaneous C5 tumors can be serially transplanted between mice and grow within ~90 days to 1.5-2 cm³ tumors in SCID Balb/c mice (take rate 100%), NOD-scid IL2Rg (NSG) mice (100%) and C57BL/6 pfp/rag2 mice (66%). In contrast, no tumor growth is observed in female mice. C5 tumors can be cryopreserved and show the same growth characteristics in vivo afterwards. C5 tumor cells do not grow stably in vitro, neither under two- nor three-dimensional cell culture conditions. Upon serial transplantation, some C5 tumors spontaneously disseminated to distant sites with an observable trend towards higher metastatic cell loads in scid compared to NSG mice. Lung metastases could be verified by histology by means of anti-PSMA immunohistochemistry, exclusively demonstrating single disseminated tumor cells (DTCs) and micro-metastases. Upon surgical resection of the primary tumors, such pulmonary foci rarely grew out to multi-cellular metastatic colonies despite doubled overall survival span. In the brain and bone marrow, the metastatic cell load present at surgery even disappeared during the post-surgical period. We provide shallow whole genome sequencing and whole exome sequencing data of C5 tumors demonstrating the copy number aberration/ mutation status of this PCa model and proving genomic stability over several passages. Moreover, we analyzed genomic and transcriptomic alterations during metastatic progression achieved by serial transplantation. This study describes a novel PCa PDX model that enables future research on several aspects of metastatic PCa, particularly for the AR+ , ERG+ , PTEN PCa subtype.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-018-35695-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6277427PMC
December 2018

Differential Proteome Analysis of Human Neuroblastoma Xenograft Primary Tumors and Matched Spontaneous Distant Metastases.

Sci Rep 2018 09 18;8(1):13986. Epub 2018 Sep 18.

Institute of Anatomy and Experimental Morphology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.

Metastasis formation is the major cause for cancer-related deaths and the underlying mechanisms remain poorly understood. In this study we describe spontaneous metastasis xenograft mouse models of human neuroblastoma used for unbiased identification of metastasis-related proteins by applying an infrared laser (IR) for sampling primary tumor and metastatic tissues, followed by mass spectrometric proteome analysis. IR aerosol samples were obtained from ovarian and liver metastases, which were indicated by bioluminescence imaging (BLI), and matched subcutaneous primary tumors. Corresponding histology proved the human origin of metastatic lesions. Ovarian metastases were commonly larger than liver metastases indicating differential outgrowth capacities. Among ~1,900 proteins identified at each of the three sites, 55 proteins were differentially regulated in ovarian metastases while 312 proteins were regulated in liver metastases. There was an overlap of 21 and 7 proteins up- and down-regulated at both metastatic sites, respectively, most of which were so far not related to metastasis such as LYPLA2, EIF4B, DPY30, LGALS7, PRPH, and NEFM. Moreover, we established in vitro sublines from primary tumor and metastases and demonstrate differences in cellular protrusions, migratory/invasive potential and glycosylation. Summarized, this work identified several novel putative drivers of metastasis formation that are tempting candidates for future functional studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-018-32236-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6143537PMC
September 2018

CEACAM1 promotes melanoma metastasis and is involved in the regulation of the EMT associated gene network in melanoma cells.

Sci Rep 2018 08 8;8(1):11893. Epub 2018 Aug 8.

Institute of Anatomy and Experimental Morphology, University Cancer Center, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany.

We investigated the functional role of CEACAM1 in a spontaneous metastasis xenograft model of human melanoma in scid mice using BRAF wildtype MeWo cells with and without RNAi mediated knockdown of CEACAM1. Tumors from the xenograft model were subjected to whole genome expression analysis and metastasis was quantified histologically. Results and identified markers were verified using tissue samples of over 100 melanoma patients. Knockdown of CEACAM1 prolonged the animals' survival by significantly reducing subcutaneous growth of MeWo tumors and spontaneous lung metastasis. Microarray analysis revealed a strong influence of CEACAM1 knockdown on the network of EMT associated genes in the xenograft tumors (e.g. downregulation of BRAF, FOSL1, NRAS and TWIST). IGFBP7 and Latexin (highest up- and downregulated expression in microarray analysis) were found to be associated with longer and shorter survival, respectively, of melanoma patients. High FOSL1 and altered TWIST1 expression were found to be correlated with shortened survival in the cohort of melanoma patients. After a stepwise selection procedure combining above markers, multivariate analysis revealed IGFBP7, Latexin and altered TWIST to be prognostic markers for death. CEACAM1 could be a target for melanoma therapy as an alternative to (or in combination with) immune checkpoint and BRAF inhibitors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-018-30338-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6082866PMC
August 2018

Knockdown of L1CAM significantly reduces metastasis in a xenograft model of human melanoma: L1CAM is a potential target for anti-melanoma therapy.

PLoS One 2018 12;13(2):e0192525. Epub 2018 Feb 12.

Institute of Anatomy and Experimental Morphology, University Cancer Center, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany.

Finding additional functional targets for combination therapy could improve the outcome for melanoma patients. In a spontaneous metastasis xenograft model of human melanoma a shRNA mediated knockdown of L1CAM more than sevenfold reduced the number of lung metastases after the induction of subcutaneous tumors for two human melanoma cell lines (MeWo, MV3). Whole genome expression arrays of the initially L1CAM high MeWo subcutaneous tumors revealed unchanged or downregulated genes involved in epithelial to mesenchymal transition (EMT) except an upregulation of Jagged 1, indicating a compensatory change in Notch signaling especially as Jagged 1 expression showed an increase in MeWo L1CAM metastases and Jagged 1 was expressed in metastases of the initially L1CAM low MV3 cells as well. Expression of 17 genes showed concordant regulation for L1CAM knockdown tumors of both cell lines. The changes in gene expression indicated changes in the EMT network of the melanoma cells and an increase in p53/p21 and p38 activity contributing to the reduced metastatic potential of the L1CAM knockdowns. Taken together, these data make L1CAM a highly interesting therapeutic target to prevent further metastatic spread in melanoma patients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0192525PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5809060PMC
April 2018

Establishment and Characterization of a Pair of Patient-derived Human Non-small Cell Lung Cancer Cell Lines from a Primary Tumor and Corresponding Lymph Node Metastasis.

Anticancer Res 2016 Apr;36(4):1507-18

Institute of Anatomy and Experimental Morphology, University Cancer Center Hamburg, University of Hamburg, Hamburg, Germany.

Background: Non-small lung cancer is the leading cause of cancer-related mortality worldwide. For a deeper understanding of tumor biology, we established a pair of cell lines derived from a primary tumor and a corresponding lymph node metastasis.

Material And Methods: The cell line BC4323 from the primary tumor (PT) and a mediastinal lymph node metastasis (LN) were derived from an adenocarcinoma (pT2, pN2, G3, UICC stage IIIa) in a 47-year-old female patient. Comparative characterization was performed by in vitro analysis. A murine xenograft was established for analysis of in vivo behavior.

Results: Chromosomal aberrations were detected in multiple chromosomal sections throughout the entire genome, with only a few differences between PT and LN cells. High-level Kirsten ras oncogene homolog (KRAS) mutation and amplification were seen based on a chromosomal translocation and novel assembled chromosome. In contrast to the genomic level, at the mRNA and protein levels, multiple differences were detectable, in particular in markers for cell adhesion [e.g. epithelial cell adhesion molecule (EpCAM), CD44, P-selectin binding, epidermal growth factor receptor (EGFR) and integrin alphaV] and the epithelial-mesenchymal transition. Due to accelerated tumor growth in vivo by the PT cells, a shortened overall survival was seen (60 vs. 101 days, p=0.005).

Conclusion: We provide detailed analysis of a cell line derived from a primary tumor and a corresponding LN metastasis. This unique feature allows further investigative analysis of the differences and regulatory processes underlying the metastatic process during tumor progression in non-small cell lung cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
April 2016

Carcinoembryonic antigen-related cell adhesion molecules (CEACAM) 1, 5 and 6 as biomarkers in pancreatic cancer.

PLoS One 2014 19;9(11):e113023. Epub 2014 Nov 19.

Institute of Anatomy and Experimental Morphology and University Cancer Center Hamburg (UCCH), University Medical-Center Hamburg-Eppendorf, Hamburg, Germany.

Background: Aim of this study was to assess the biological function in tumor progression and metastatic process carcinoembryonic antigen-related cell adhesion molecules (CEACAM) 1, 5 and 6 in pancreatic adenocarcinoma (PDAC).

Experimental Design: CEACAM knock down cells were established and assessed in vitro and in a subcutaneous and intraperitoneal mouse xenograft model. Tissue and serum expression of patients with PDAC were assessed by immunohistochemistry (IHC) and by enzyme linked immunosorbent assays.

Results: Presence of lymph node metastasis was correlated with CEACAM 5 and 6 expression (determined by IHC) and tumor recurrence exclusively with CEACAM 6. Patients with CEACAM 5 and 6 expression showed a significantly shortened OS in Kaplan-Meier survival analyses. Elevated CEACAM6 serum values showed a correlation with distant metastasis and. Survival analysis revealed a prolonged OS for patients with low serum CEACAM 1 values. In vitro proliferation and migration capacity was increased in CEACAM knock down PDAC cells, however, mice inoculated with CEACAM knock down cells showed a prolonged overall-survival (OS). The number of spontaneous pulmonary metastasis was increased in the CEACAM knock down group.

Conclusion: The effects mediated by CEACAM expression in PDAC are complex, though overexpression is correlated with loco-regional aggressive tumor growth. However, loss of CEACAM can be considered as a part of epithelial-mesenchymal transition and is therefore of rather importance in the process of distant metastasis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0113023PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4237406PMC
July 2015

Aberrant presentation of HPA-reactive carbohydrates implies Selectin-independent metastasis formation in human prostate cancer.

Clin Cancer Res 2014 Apr 13;20(7):1791-802. Epub 2014 Feb 13.

Authors' Affiliations: Institutes of Anatomy and Experimental Morphology and Pathology, University Cancer Center Hamburg, Department of General, Visceral and Thoracic Surgery, and Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

Purpose: To investigate the impact of prostate cancer cell surface glycosylation as part of the tumor cell-endothelial cell interaction in prostate cancer metastasis.

Experimental Design: Glycosyltransferase expression was profiled in metastasis-derived prostate cancer cell lines and compared with primary epithelium. Prostate cancer cells were examined for HPA- and selectin-binding and adhesion to endothelium. Spontaneous metastasis xenograft models were established to test the lectin HPA-binding sites as a marker of metastatic competence and to evaluate E-selectin-binding sites in vivo. The importance of selectins for metastasis formation was analyzed using Sele(-/-)/Selp(-/-) mice. The clinical relevance of HPA- and E-selectin-binding sites in prostate cancer was determined.

Results: Glycosyltransferases involved in the synthesis of common HPA-binding sites are downregulated in prostate cancer cells. An absence of HPA-reactive carbohydrates specifically indicates spontaneous metastatic spread of prostate cancer xenografts in vivo and a poor prognosis of patients with prostate cancer. HPA-binding sites decrease in lymph node metastases compared with corresponding primary tumors. Common selectin ligands are absent on prostate cancer cells, which do not adhere to recombinant selectins or endothelium under shear stress in vitro. Spontaneous metastasis formation is largely independent of selectins in vivo. E-selectin-binding sites are detectable in only 2% of patients with prostate cancer without prognostic significance.

Conclusion: Prostate cancer is characterized by an inverse functional and prognostic importance of HPA-binding sites compared with other adenocarcinomas. Accordingly, this study surprisingly shows that the selectin-selectin ligand axis, which is essential for extravasation and thus metastasis formation in several malignancies, can be circumvented in prostate cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/1078-0432.CCR-13-2308DOI Listing
April 2014
-->