Publications by authors named "Hanming Chen"

11 Publications

  • Page 1 of 1

Long-term copper exposure promotes apoptosis and autophagy by inducing oxidative stress in pig testis.

Environ Sci Pollut Res Int 2021 Jun 15. Epub 2021 Jun 15.

College of Veterinary, South China Agricultural University, Guangzhou, 510642, China.

Copper (Cu) is a heavy metal which is being used widely in the industry and agriculture. However, the overuse of Cu makes it a common environmental pollutant. In order to investigate the testicular toxicity of Cu, the pigs were divided into three groups and were given Cu at 10 (control), 125, and 250 mg/kg body weight, respectively. The feeding period was 80 days. Serum hormone results showed that Cu exposure decreased the concentrations of follicular stimulating hormone (FSH) and luteinizing hormone (LH) and increased the concentration of thyroxine (T4). Meanwhile, Cu exposure upregulated the expression of Cu transporter mRNA (Slc31a1, ATP7A, and ATP7B) in the testis, leading to increase in testicular Cu and led to spermatogenesis disorder. The Cu exposure led to an increased expression of antioxidant-related mRNA (Gpx4, TRX, HO-1, SOD1, SOD2, SOD3, CAT), along with increase in the MDA concentration in the testis. In LG group, the ROS in the testis was significantly increased. Furthermore, the apoptotic-related mRNA (Caspase3, Caspase8, Caspase9, Bax, Cytc, Bak1, APAF1, p53) and protein (Active Caspase3) and the autophagy-related mRNA (Beclin1, ATG5, LC3, and LC3B) expression increased after Cu exposure. The mitochondrial membrane potential in the testicular tissue decreased, while the number of apoptotic cells increased, as a result of oxidative stress. Overall, our study indicated that the Cu exposure promotes testicular apoptosis and autophagy by mediating oxidative stress, which is considered as the key mechanism causing testicular degeneration as well as dysfunction.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-021-14853-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8203493PMC
June 2021

Acetyl-L-Carnitine Induces Autophagy to Promote Mouse Spermatogonia Cell Recovery after Heat Stress Damage.

Biomed Res Int 2021 18;2021:8871328. Epub 2021 Jan 18.

College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.

Acetyl-L-carnitine (ALC) is an effective substrate for mitochondrial energy metabolism and is known to prevent neurodegeneration and attenuate heavy metal-induced injury. In this study, we investigated the function of ALC in the recovery of mouse spermatogonia cells (GC-1 cells) after heat stress (HS). The cells were randomly divided into three groups: control group, HS group (incubated at 42°C for 90 min), and HS + ALC group (treatment of 150 M ALC after incubated at 42°C for 90 min). After heat stress, all of the cells were recovered at 37°C for 6 h. In this study, the content of intracellular lactate dehydrogenase (LDH) in the cell supernatant and the malondialdehyde (MDA) levels, catalase (CAT) levels, and total antioxidant capacity (T-AOC) were significantly increased in the HS group compared to the CON group. In addition, the mitochondrial membrane potential (MMP) was markedly decreased, while the apoptosis rate and the expression of apoptosis-related genes (Bcl-2, Bax, and caspase3) were significantly increased in the HS group compared to the CON group. Furthermore, the number of autophagosomes and the expression of autophagy-related genes (Atg5, Beclin1, and LC3II) and protein levels of p62 were increased, but the expression of LAMP1 was decreased in the HS group compared to the CON group. However, treatment with ALC remarkably improved cell survival and decreased cell oxidative stress. It was unexpected that levels of autophagy were markedly increased in the HS + ALC group compared to the HS group. Taken together, our present study evidenced that ALC could alleviate oxidative stress and improve the level of autophagy to accelerate the recovery of GC-1 cells after heat stress.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1155/2021/8871328DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7837762PMC
May 2021

The hepatotoxicity of altrazine exposure in mice involves the intestinal microbiota.

Chemosphere 2021 Jun 11;272:129572. Epub 2021 Jan 11.

College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China. Electronic address:

Atrazine (ATR), a bio accumulative herbicide is frequently used in agriculture to control unwanted weeds. Due to continuous application, atrazine persists in the environment and causes deleterious impacts including neurotoxicity, hepatotoxicity, and gut microbiota disorders. Therefore, this study for the first time reports the variation in the gut microbiota, induction of process of apoptosis and autophagy in mice induced by ATR. Results indicated that TUNEL-positive hepatocytes suggestive of apoptosis were increased in livers of different experimental mice. Results on metabolic analysis in liver tissues indicated an overall change in seventy-six metabolites particularly Uridine 5'-diphosphate, Propenoylcarnitine and Chinenoside V resulting in generation of energy-related metabolic disorders and imbalance of oxidation/autoxidation status. Results on gut microbiome inquisition showed that ATR changed the richness and diversity of gut microbiota of mice and number of Firmicutes. Moreover, results also revealed that ATR induced apoptosis via disruption of apoptotic (Bax, Bcl2, and Casp3) and autophagy (LC3/Map1lc3a, Beclin 1/Becn1 and P62/Sqstm1) genes. Results of our experimental study confirmed that changes in gut microbiota play a significant role in process of gut immune regulation and inflammation via different metabolites. In conclusion, the findings of our study provide a new idea for the involvement of mechanisms of detoxification in liver and inquisition of gut microbiota plays crucial role in regulation of physiological activities through liver-gut axis to mitigate toxic effects in animals.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2021.129572DOI Listing
June 2021

Biomimetic Metal-Organic Framework Composite-Mediated Cascade Catalysis for Synergistic Bacteria Killing.

ACS Appl Mater Interfaces 2020 Aug 5;12(33):36996-37005. Epub 2020 Aug 5.

State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

Encapsulating nanoparticles/biomolecules into metal-organic freamworks (MOFs) has proven to be highly effective in creating new functions during their applications. However, it is highly desirable yet remains challenging to achieve the synergy of specific functions between the MOF host and guest species. Herein, inspired by the natural multienzyme system, a novel MOF composite biomimetic structure based on the coencapsulation of glucose oxidase (GO) and l-arginine (l-Arg) into Cu-MOFs (CuBDC) with Fenton-like catalytic activity is designed for achieving the synergistic antibacterial effect. Once activated by GO-catalyzed glucose oxidation, a large amount of oxygen radicals, toxic ONOO, and NO are rapidly produced over this well-designed l-Arg/[email protected] through a double-cascade reaction. Thanks to the synergy of highly reactive species, outstanding antibacterial effects (bacterial inactivation ≥97%) are observed at very low doses (38 μg mL for and 3.8 μg mL for ). In addition, the experiment in mice demonstrated that the as-prepared l-Arg/[email protected] has good biocompatibility, indicating its good potential in practical applications. Such a biomimetic multienzyme system proposes a new design idea for highly efficient antibiosis as well as even therapy for tumors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c12159DOI Listing
August 2020

Integration of transcriptomic and metabolomic data reveals metabolic pathway alteration in mouse spermatogonia with the effect of copper exposure.

Chemosphere 2020 Oct 10;256:126974. Epub 2020 May 10.

College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China. Electronic address:

Copper is a widespread heavy metal in environment and has toxic effects when exposed. However, study of copper-induced male reproductive toxicity is still insufficient to report, and the underlying mechanisms are unknown. Keeping in view, RNA-Seq and metabolomic were performed to identify metabolic pathways that were distressed in mouse spermatogonia with the effect of copper sulfate, and the integrated analysis of the mechanism of copper administered GC-1 cells from metabolomic and transcriptomic data. Our results demonstrated that many genes and metabolites were regulated in the copper sulfate-treated cells. The differential metabolites analysis showed that 49 and 127 metabolites were significantly different in ESI+ and ESI- mode, respectively. Meanwhile, a total of 2813 genes were up-regulated and 2488 genes were down-regulated in the treatment groups compared to those in the control groups. Interestingly, ophthalmic acid and gamma glutamylleucine were markedly increased by copper treatment in two modes. By integrating with transcriptomic and metabolomic data, we revealed that 37 and 22 most related pathways were over-enriched in ESI+ and ESI- mode, respectively. Whereas, amino acid biosynthesis and metabolism play essential role in the potential relationship between DEGs and metabolites, which suggests that amino acid biosynthesis and metabolism may be the major metabolic pathways disturbed by copper in GC-1 cells. This study provides important clues and evidence for understanding the mechanisms responsible for copper-induced male spermatogenesis toxicity, and useful biomarkers indicative of copper exposure could be discovered from present study.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2020.126974DOI Listing
October 2020

Photodeposition of Pd onto TiO nanowires for aqueous-phase selective hydrogenation of phenolics to cyclohexanones.

Nanoscale 2020 Jan 15;12(4):2603-2612. Epub 2020 Jan 15.

State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.

The selective hydrogenation of phenolics to cyclohexanones is an important process in both industrial application and utilization of fossil and renewable feedstocks. However this process remains a challenge in achieving high conversion of phenolics and high selectivity of ketones under mild reaction conditions. In this work, TiO nanowires (TNWs) are successfully synthesized by using an integrated method and the ultra-small Pd clusters were then deposited onto the TNWs by photoreduction. The obtained Pd/TNW catalyst shows superior catalytic performances in the hydrogenation of phenolic derivatives to the corresponding cyclohexanones. In particular, a nearly full conversion of phenol with high selectivity (>99.0%) to cyclohexanone can be achieved at 50 °C and 5.0 bar H in water. A series of characterization studies by means of XRD, XPS, EPR, FTIR, TPD, STEM, and kinetic studies indicate that abundant exposed Lewis acid and basic sites on the surface of TNWs play important roles in the activation of phenolics and desorption of cyclohexanones, while the Pd clusters by photodeposition can attain a hybrid of Pd and Pd species to facilitate the activation of dihydrogenation. A plausible catalytic pathway with synergistic effects of TNWs and Pd species is then proposed.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9nr08324cDOI Listing
January 2020

Toxic effects of arsenic trioxide on spermatogonia are associated with oxidative stress, mitochondrial dysfunction, autophagy and metabolomic alterations.

Ecotoxicol Environ Saf 2020 Mar 14;190:110063. Epub 2019 Dec 14.

College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China. Electronic address:

Arsenic is a toxic metalloid that can cause male reproductive malfunctions and is widely distributed in the environment. The aim of this study was to investigate the cytotoxicity of arsenic trioxide (ATO) induced GC-1 spermatogonial (spg) cells. Our results found that ATO increased the levels of catalase (CAT) and malonaldehyde (MDA) and reactive oxygen species (ROS), while decreasing glutathione (GSH) and the total antioxidant capacity (T-AOC). Therefore, ATO triggered oxidative stress in GC-1 spg cells. In addition, ATO also caused severe mitochondrial dysfunction that included an increase in residual oxygen consumption (ROX), and decreased the routine respiration, maximal and ATP-linked respiration (ATP-L-R), as well as spare respiratory capacity (SRC), and respiratory control rate (RCR); ATO also damaged the mitochondrial structure, including mitochondrial cristae disordered and dissolved, mitochondrial vacuolar degeneration. Moreover, degradation of p62, LC3 conversion, increasing the number of acidic vesicle organelles (AVOs) and autophagosomes and autolysosomes are demonstrated that the cytotoxicity of ATO may be associated with autophagy. Meanwhile, the metabolomics analysis results showed that 20 metabolites (10 increased and 10 decreased) were significantly altered with the ATO exposure, suggesting that maybe there are the perturbations in amino acid metabolism, lipid metabolism, glycan biosynthesis and metabolism, metabolism of cofactors and vitamins. We concluded that ATO was toxic to GC-1 spg cells via inducing oxidative stress, mitochondrial dysfunction and autophagy as well as the disruption of normal metabolism. This study will aid our understanding of the mechanisms behind ATO-induced spermatogenic toxicity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2019.110063DOI Listing
March 2020

Copper-induced apoptosis and autophagy through oxidative stress-mediated mitochondrial dysfunction in male germ cells.

Toxicol In Vitro 2019 Dec 3;61:104639. Epub 2019 Sep 3.

College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China. Electronic address:

Excess copper reduces sperm number and motility but the causes are unclear. We investigated the toxic effects of copper exposure on the immortalized male germ cell line GC-1. Copper addition to cells altered viability and morphology in a dose-dependent manner. Copper addition resulted in increased levels of reactive oxygen species (ROS), malonaldehyde (MDA) and lactate dehydrogenase (LDH) while catalase (CAT) activity and glutathione (GSH) declined. The mitochondrial transmembrane potential and ATP levels decreased in response to copper as did mitochondria fission that led to mitochondrial dysfunction. The apoptosis rate was also proportional to the level of copper in the growth medium. Copper also down-regulated Bcl2 and up-regulated Bax, Casp8 and Casp3 linking the effects of copper to increased apoptosis. The levels of mRNA for the autophagy-related genes (Atg3, Atg5, p62, Lc3b/Lc3a) and proteins (Lc3b/Lc3a, BECN1, Atg5, p62) all increased in copper-treated cells as were levels Lc3 determined by fluorescence microscopy. These results indicated that copper induces apoptosis and autophagy through oxidative stress-mediated mitochondrial dysfunction.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tiv.2019.104639DOI Listing
December 2019

Chronic Copper Exposure Induces Hypospermatogenesis in Mice by Increasing Apoptosis Without Affecting Testosterone Secretion.

Biol Trace Elem Res 2020 Jun 23;195(2):472-480. Epub 2019 Aug 23.

College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.

Chronic copper exposure impaired spermatogenesis in adult male mice. The aim of this study was to determine whether chronic copper exposure can induce apoptosis of testicular cell and hypospermatogenesis via disturbing testosterone synthesis in adult male mice. In the present study, sixty CD-1 male mice were randomly divided into four groups, and were continuously administered for 8 weeks by oral gavage with copper sulfate at a dose of 0, 25, 100, and 150 mg/kg/day, respectively. We determined the content of serum and testicular copper, testicular coefficient, testicular histopathology, sperm count and motility, the mRNA and protein levels of Caspase-3, Bax, and Bcl-2, Leydig cell count, testosterone content, testosterone synthetase, and testosterone synthesis-related genes. The results showed that the copper levels in serum increased in a dose-dependent manner, and the copper levels in testes were significantly related to serum copper levels. Male mice given copper sulfate 100 and 150 dosage groups showed significant decreased in sperm motility and sperm number as well as increased in testes damage, and there was no significant change in testicular coefficient in the four groups. The mRNA levels of Bcl-2 decreased and Caspase-3 increased in 150 dosage group, and Bax increased in two higher dosage groups. Meanwhile, Caspase-3 and Bax proteins increased in 150 dosage group, and Bcl-2 protein decreased in three copper treatment groups. Nevertheless, there were no differences on the levels of testosterone content and testosterone synthetase of 3β-HSD, 17β-HSD, 17α-Hyd, and 20α-Hyd, mRNA levels of Cyp11a1, Cyp17a1, and Star, and quantity of Leydig cells in four groups. Overall, these data showed that chronic copper exposure led to copper residues in the testes, and the doses of 100 and 150 mg/kg/day copper sulfate may induce hypospermatogenesis by increasing apoptosis without affecting testosterone secretion.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12011-019-01852-xDOI Listing
June 2020

Modelling viscoacoustic wave propagation with the lattice Boltzmann method.

Sci Rep 2017 08 31;7(1):10169. Epub 2017 Aug 31.

State Key Laboratory of Petroleum Resources and Prospecting, CNPC Key Lab of Geophysical Exploration, China University of Petroleum, 102249, Beijing, China.

In this paper, the lattice Boltzmann method (LBM) is employed to simulate wave propagation in viscous media. LBM is a kind of microscopic method for modelling waves through tracking the evolution states of a large number of discrete particles. By choosing different relaxation times in LBM experiments and using spectrum ratio method, we can reveal the relationship between the quality factor Q and the parameter τ in LBM. A two-dimensional (2D) homogeneous model and a two-layered model are tested in the numerical experiments, and the LBM results are compared against the reference solution of the viscoacoustic equations based on the Kelvin-Voigt model calculated by finite difference method (FDM). The wavefields and amplitude spectra obtained by LBM coincide with those by FDM, which demonstrates the capability of the LBM with one relaxation time. The new scheme is relatively simple and efficient to implement compared with the traditional lattice methods. In addition, through a mass of experiments, we find that the relaxation time of LBM has a quantitative relationship with Q. Such a novel scheme offers an alternative forward modelling kernel for seismic inversion and a new model to describe the underground media.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-017-10833-wDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5579301PMC
August 2017

A rice glutamate receptor-like gene is critical for the division and survival of individual cells in the root apical meristem.

Plant Cell 2006 Feb 23;18(2):340-9. Epub 2005 Dec 23.

State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310029, China.

Glu receptors are known to function as Glu-activated ion channels that mediate mostly excitatory neurotransmission in animals. Glu receptor-like genes have also been reported in higher plants, although their function is largely unknown. We have identified a rice (Oryza sativa) Glu receptor-like gene, designated GLR3.1, in which mutation by T-DNA insertion caused a short-root mutant phenotype. Histology and DNA synthesis analyses revealed that the mutant root meristematic activity is distorted and is accompanied by enhanced programmed cell death. Our results supply genetic evidence that a plant Glu receptor-like gene, rice GLR3.1, is essential for the maintenance of cell division and individual cell survival in the root apical meristem at the early seedling stage.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1105/tpc.105.037713DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1356543PMC
February 2006
-->