Publications by authors named "Hanane Laklai"

10 Publications

  • Page 1 of 1

Oncolytic Vaccinia Virus Gene Modification and Cytokine Expression Effects on Tumor Infection, Immune Response, and Killing.

Mol Cancer Ther 2021 Aug 27;20(8):1481-1494. Epub 2021 May 27.

UCSF Helen Diller Family Comprehensive Cancer Center, Cardiovascular Research Institute and Department of Anatomy, University of California, San Francisco, San Francisco, California.

Oncolytic vaccinia viruses have promising efficacy and safety profiles in cancer therapy. Although antitumor activity can be increased by manipulating viral genes, the relative efficacy of individual modifications has been difficult to assess without side-by-side comparisons. This study sought to compare the initial antitumor activity after intravenous administration of five vaccinia virus variants of the same Western Reserve backbone and thymidine kinase gene deletion in RIP-Tag2 transgenic mice with spontaneous pancreatic neuroendocrine tumors. Tumors had focal regions of infection at 5 days after all viruses. Natural killer (NK) cells were restricted to these sites of infection, but CD8 T cells and tumor cell apoptosis were widespread and varied among the viruses. Antitumor activity of virus VV-A34, bearing amino acid substitution A34 to increase viral spreading, and virus VV-IL2v, expressing a mouse IL2 variant (mIL2v) with attenuated IL2 receptor alpha subunit binding, was similar to control virus VV-GFP. However, antitumor activity was significantly greater after virus VV-A34/IL2v, which expressed mIL2v together with A34 mutation and viral B18R gene deletion, and virus VV-GMCSF that expressed mouse GM-CSF. Both viruses greatly increased expression of CD8 antigens and cytotoxicity genes granzyme A, granzyme B, Fas ligand, and perforin-1 in tumors. VV-A34/IL2v led to higher serum IL2 and greater tumor expression of death receptor ligand TRAIL, but VV-GMCSF led to higher serum GM-CSF, greater expression of leukocyte chemokines and adhesion molecules, and more neutrophil recruitment. Together, the results show that antitumor activity is similarly increased by viral expression of GM-CSF or IL2v combined with additional genetic modifications.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/1535-7163.MCT-20-0863DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8338778PMC
August 2021

Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular fibrosis and tumor progression.

Nat Med 2016 05 18;22(5):497-505. Epub 2016 Apr 18.

Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, California, USA.

Fibrosis compromises pancreatic ductal carcinoma (PDAC) treatment and contributes to patient mortality, yet antistromal therapies are controversial. We found that human PDACs with impaired epithelial transforming growth factor-β (TGF-β) signaling have high epithelial STAT3 activity and develop stiff, matricellular-enriched fibrosis associated with high epithelial tension and shorter patient survival. In several KRAS-driven mouse models, both the loss of TGF-β signaling and elevated β1-integrin mechanosignaling engaged a positive feedback loop whereby STAT3 signaling promotes tumor progression by increasing matricellular fibrosis and tissue tension. In contrast, epithelial STAT3 ablation attenuated tumor progression by reducing the stromal stiffening and epithelial contractility induced by loss of TGF-β signaling. In PDAC patient biopsies, higher matricellular protein and activated STAT3 were associated with SMAD4 mutation and shorter survival. The findings implicate epithelial tension and matricellular fibrosis in the aggressiveness of SMAD4 mutant pancreatic tumors and highlight STAT3 and mechanics as key drivers of this phenotype.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nm.4082DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4860133PMC
May 2016

Force Matters: Biomechanical Regulation of Cell Invasion and Migration in Disease.

Trends Cell Biol 2016 07 4;26(7):486-497. Epub 2016 Apr 4.

Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA. Electronic address:

Atherosclerosis, cancer, and various chronic fibrotic conditions are characterized by an increase in the migratory behavior of resident cells and the enhanced invasion of assorted exogenous cells across a stiffened extracellular matrix (ECM). This stiffened scaffold aberrantly engages cellular mechanosignaling networks in cells, which promotes the assembly of invadosomes and lamellae for cell invasion and migration. Accordingly, deciphering the conserved molecular mechanisms whereby matrix stiffness fosters invadosome and lamella formation could identify therapeutic targets to treat fibrotic conditions, and reducing ECM stiffness could ameliorate disease progression.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tcb.2016.03.007DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4970516PMC
July 2016

Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival.

Cancer Cell 2014 Jun 22;25(6):719-34. Epub 2014 May 22.

Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA. Electronic address:

Pancreatic ductal adenocarcinoma (PDAC) is associated with marked fibrosis and stromal myofibroblasts, but their functional contribution remains unknown. Transgenic mice with the ability to delete αSMA(+) myofibroblasts in pancreatic cancer were generated. Depletion starting at either noninvasive precursor (pancreatic intraepithelial neoplasia) or the PDAC stage led to invasive, undifferentiated tumors with enhanced hypoxia, epithelial-to-mesenchymal transition, and cancer stem cells, with diminished animal survival. In PDAC patients, fewer myofibroblasts in their tumors also correlated with reduced survival. Suppressed immune surveillance with increased CD4(+)Foxp3(+) Tregs was observed in myofibroblast-depleted mouse tumors. Although myofibroblast-depleted tumors did not respond to gemcitabine, anti-CTLA4 immunotherapy reversed disease acceleration and prolonged animal survival. This study underscores the need for caution in targeting carcinoma-associated fibroblasts in PDAC.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ccr.2014.04.005DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4180632PMC
June 2014

Stromally derived lysyl oxidase promotes metastasis of transforming growth factor-β-deficient mouse mammary carcinomas.

Cancer Res 2013 Sep 15;73(17):5336-46. Epub 2013 Jul 15.

Department of Cancer Biology, Vanderbilt University School of Medicine and Vanderbilt-Ingram Cancer Center, Nashville, TN 37212, USA.

The tumor stromal environment can dictate many aspects of tumor progression. A complete understanding of factors driving stromal activation and their role in tumor metastasis is critical to furthering research with the goal of therapeutic intervention. Polyoma middle T-induced mammary carcinomas lacking the type II TGF-β receptor (PyMT(mgko)) are highly metastatic compared with control PyMT-induced carcinomas (PyMT(fl/fl)). We hypothesized that the PyMT(mgko)-activated stroma interacts with carcinoma cells to promote invasion and metastasis. We show that the extracellular matrix associated with PyMT(mgko) tumors is stiffer and has more fibrillar collagen and increased expression of the collagen crosslinking enzyme lysyl oxidase (LOX) compared with PyMT(fl/fl) mammary carcinomas. Inhibition of LOX activity in PyMT(mgko) mice had no effect on tumor latency and size, but significantly decreased tumor metastasis through inhibition of tumor cell intravasation. This phenotype was associated with a decrease in keratin 14-positive myoepithelial cells in PyMT(mgko) tumors following LOX inhibition as well as a decrease in focal adhesion formation. Interestingly, the primary source of LOX was found to be activated fibroblasts. LOX expression in these fibroblasts can be driven by myeloid cell-derived TGF-β, which is significantly linked to human breast cancer. Overall, stromal expansion in PyMT(mgko) tumors is likely caused through the modulation of immune cell infiltrates to promote fibroblast activation. This feeds back to the epithelium to promote metastasis by modulating phenotypic characteristics of basal cells. Our data indicate that epithelial induction of microenvironmental changes can play a significant role in tumorigenesis and attenuating these changes can inhibit metastasis. Cancer Res; 73(17); 5336-46. ©2013 AACR.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-13-0012DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3766496PMC
September 2013

βArrestin-1 and Mcl-1 modulate self-renewal growth of cancer stem-like side-population cells in non-small cell lung cancer.

PLoS One 2013 13;8(2):e55982. Epub 2013 Feb 13.

Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America.

Side population (SP) cells have been reported to have properties of cancer stem-like cells (CSCs) in non-small cell lung carcinoma (NSCLC), yet their molecular features have not been fully elucidated. Here we show that, NSCLC-SP cells were enriched in G(0)/G-(1) phase of cell cycle, had higher aldehyde dehydrogenase activity as well as higher clonogenic and self-renewing ability compared to main population (MP) cells. Interestingly, SP cells were also able to trans-differentiate into angiogenic tubules in vitro and were highly tumorigenic as compared to MP cells. SP-derived tumors demonstrated the intratumoral heterogeneity comprising of both SP and MP cells, suggesting the self-renewal and differentiation ability of SP cells are manifested in vivo as well. βArrestin-1 (βArr1) is involved in the progression of various cancers including NSCLCs and we find that depletion of βArr1 significantly blocked the SP phenotype; whereas depletion of βArr2 had relatively minor effects. Ectopic expression of βArr1 resulted in increased SP frequency and ABCG2 expression while abrogation of βArr1 expression suppressed the self-renewal growth and expansion of A549 cells. Anti-apoptotic protein Mcl-1 is known to be one of the key regulators of self-renewal of tissue stem cells and is thought to contribute to survival of NSCLC cells. Our experiments show that higher levels of Mcl-1 were expressed in SP cells compared to MP cells at both transcriptional and translational levels. In addition, Obatoclax, a pharmacological inhibitor of Mcl-1, could effectively prevent the self-renewal of both EGFR-inhibitor sensitive and resistant NSCLC cells. In conclusion, our findings suggest that βArr1 and Mcl-1 are involved in the self-renewal and expansion of NSCLC-CSCs and are potential targets for anti-cancer therapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0055982PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3572139PMC
August 2013

Netrin-1 mediates early events in pancreatic adenocarcinoma progression, acting on tumor and endothelial cells.

Gastroenterology 2010 Apr 18;138(4):1595-606, 1606.e1-8. Epub 2010 Jan 18.

Institut National de la Sante et de la Recherche Medicale U920, Talence, France.

Background & Aims: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers. It is characterized by substantial tumor cell invasion and early-stage metastasis. We developed an in vivo model to analyze interactions between cancer and stromal cells during early stages of PDAC.

Methods: Human pancreatic adenocarcinoma cells were grafted onto the chick chorioallantoic membrane (CAM). Human and chicken GeneChips were used simultaneously to study gene regulation during PDAC cell invasion. Bioinformatic analysis was used to identify human orthologs and cell specificity of gene expression. The effects of netrin-1 encoded by NTN1 were investigated in adhesion, invasion, and apoptosis assays. The effects of NTN1 silencing with small interfering RNAs were investigated in PDAC cells in vivo. NTN1 expression was measured in human PDAC samples.

Results: PDAC cells rapidly invade the CAM stroma and remodel the CAM vasculature. Around 800 stromal genes were up-regulated by >2-fold; the angiogenesis regulators vascular endothelial growth factor D, thrombospondin 1, and CD151 were among the most highly regulated genes. Silencing of tumor cell NTN1, which is up-regulated 4-fold in the PDAC model, inhibited tumor cell invasion in vivo. Netrin-1 conferred apoptosis resistance to tumor and endothelial cells in vitro, induced their invasion, and provided an adhesive substrate for tumor cells. NTN1 and its gene product are strongly overexpressed in human PDAC samples.

Conclusions: We developed a useful tool to study the invasive mechanisms of early-stage PDAC. Netrin-1 might be an important regulator of pancreatic tumor growth that functions in tumor and endothelial cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1053/j.gastro.2009.12.061DOI Listing
April 2010

Thrombospondin-1 is a critical effector of oncosuppressive activity of sst2 somatostatin receptor on pancreatic cancer.

Proc Natl Acad Sci U S A 2009 Oct 1;106(42):17769-74. Epub 2009 Oct 1.

Institut National de la Santé et de la Recherche Médicale U858, I2MR, Université Toulouse III Paul Sabatier, 31432 Toulouse, France.

The somatostatin receptor subtype 2 (sst2) behaves as a tumor suppressor when expressed and stimulated by its ligand somatostatin in pancreatic cancer. We reveal a mechanism underlying oncosuppressive action of sst2, whereby this inhibitory receptor upregulates the expression of the secreted angioinhibitory factor thrombospondin-1 (TSP-1), as demonstrated in exocrine BxPC-3 and endocrine BON pancreatic cancer cells. The sst2-dependent upregulation of TSP-1 occurs through the inhibition of the PI3K pathway. It depends on transcriptional and translational events, involving a previously undescribed IRES in the 5'-UTR of TSP-1 mRNA. Chick chorioallantoic membrane was used as an in vivo model to demonstrate that TSP-1 is a critical effector of the inhibitory role of sst2 on the neoangiogenesis and oncogenesis induced by pancreatic cancer cells. TSP-1 reduced in vitro tubulogenesis of endothelial cells when grown in conditioned medium from pancreatic cancer cells expressing sst2, as compared to those expressing the control vector. TSP-1 inhibited tumor cell-induced neoangiogenesis by directly sequestering the proangiogenic factor VEGF, and inactivating the angiogenesis initiated by VEGFR2 phosphorylation in endothelial cells. Using human pancreatic tissue-microarrays, the expression of both sst2 and TSP-1 was shown to be correlated during the pancreatic neoplastic program. Both proteins are nearly undetectable in normal exocrine pancreas and in most invasive cancer lesions, but their expression is strikingly upregulated in most preinvasive cancer-adjacent lesions. The upregulation of both sst2 and TSP-1 tumor suppressors may function as an early negative feedback to restrain pancreatic carcinogenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.0908674106DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2764925PMC
October 2009

Antitumor effects of somatostatin.

Mol Cell Endocrinol 2008 May 13;286(1-2):230-7. Epub 2008 Feb 13.

INSERM U858, Institut de Médecine Moléculaire de Rangueil, Dpt Cancer/E16, CHU Rangueil, Toulouse Cedex 4, France.

Since its discovery three decades ago as an inhibitor of GH release from the pituitary gland, somatostatin has attracted much attention because of its functional role in the regulation of a wide variety of physiological functions in the brain, pituitary, pancreas, gastrointestinal tract, adrenals, thyroid, kidney and immune system. In addition to its negative role in the control of endocrine and exocrine secretions, somatostatin and analogs also exert inhibitory effects on the proliferation and survival of normal and tumor cells. Over the past 15 years, studies have begun to reveal some of the molecular mechanisms underlying the antitumor activity of somatostatin. This review covers the present knowledge in the antitumor effect of somatostatin and analogs and discusses the perspectives of novel clinical strategies based on somatostatin receptor sst2 gene transfer therapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mce.2008.02.002DOI Listing
May 2008
-->