Publications by authors named "Ha Tan Kang"

2 Publications

  • Page 1 of 1

Peroxiredoxin III and sulfiredoxin together protect mice from pyrazole-induced oxidative liver injury.

Antioxid Redox Signal 2012 Nov 31;17(10):1351-61. Epub 2012 May 31.

Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea.

Aims: To define the mechanisms underlying pyrazole-induced oxidative stress and the protective role of peroxiredoxins (Prxs) and sulfiredoxin (Srx) against such stress.

Results: Pyrazole increased Srx expression in the liver of mice in a nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent manner and induced Srx translocation from the cytosol to the endoplasmic reticulum (ER) and mitochondria. Pyrazole also induced the expression of CYP2E1, a primary reactive oxygen species (ROS) source for ethanol-induced liver injury, in ER and mitochondria. However, increased CYP2E1 levels only partially accounted for the pyrazole-mediated induction of Srx, prompting the investigation of CYP2E1-independent ROS generation downstream of pyrazole. Indeed, pyrazole increased ER stress, which is known to elevate mitochondrial ROS. In addition, pyrazole up-regulated CYP2E1 to a greater extent in mitochondria than in ER. Accordingly, among Prxs I to IV, PrxIII, which is localized to mitochondria, was preferentially hyperoxidized in the liver of pyrazole-treated mice. Pyrazole-induced oxidative damage to the liver was greater in PrxIII(-/-) mice than in wild-type mice. Such damage was also increased in Srx(-/-) mice treated with pyrazole, underscoring the role of Srx as the guardian of PrxIII.

Innovation: The roles of Prxs, Srx, and ER stress have not been previously studied in relation to pyrazole toxicity.

Conclusion: The concerted action of PrxIII and Srx is important for protection against pyrazole-induced oxidative stress arising from the convergent induction of CYP2E1-derived and ER stress-derived ROS in mitochondria.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1089/ars.2011.4334DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3437045PMC
November 2012

Identification and characterization of a novel angiostatin-binding protein by the display cloning method.

J Biochem Mol Biol 2004 Mar;37(2):159-66

Division of Life Sciences, Korea Institute of Science and Technology, PO Box 131, Cheongryang, Seoul 130-650, Korea.

Angiostatin is a potent anti-angiogenic protein. To examine the angiostatin-interacting proteins, we used the display-cloning method with a T7 phage library presenting human cDNAs. The specific T7 phage clone that bound to the immobilized angiostatin was isolated, and a novel gene encoding the displayed polypeptide on the isolated T7 phage was identified. The displayed angiostatin-binding sequence was expressed in E. coli as a soluble protein and purified to homogeneity. This novel angiostatin-binding region interacted specifically to angiostatin with a dissociation constant of 3.4 x 10(-7) M. A sequence analysis showed that the identified sequence was a part of the large ORF of 1,998 amino acids, whose function has not yet been characterized. A Northern analysis indicated that the gene containing the angiostatin-binding sequence was expressed differentially in the developmental stages or cell types.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.5483/bmbrep.2004.37.2.159DOI Listing
March 2004