Publications by authors named "Gustavo Henrique Frigieri"

3 Publications

  • Page 1 of 1

Use of non-invasive intracranial pressure pulse waveform to monitor patients with End-Stage Renal Disease (ESRD).

PLoS One 2021 22;16(7):e0240570. Epub 2021 Jul 22.

Biological and Health Sciences Division, State University of Ponta Grossa-UEPG, Ponta Grossa-PR, Brazil.

End-stage renal disease (ESRD) is treated mainly by hemodialysis, however, hemodialysis is associated with frequent complications, some of them involve the increased intracranial pressure. In this context, monitoring the intracranial pressure of these patients may lead to a better understanding of how intracranial pressure morphology varies with hemodialysis. This study aimed to follow-up patients with ESRD by monitoring intracranial pressure before and after hemodialysis sessions using a noninvasive method. We followed-up 42 patients with ESRD in hemodialysis, for six months. Noninvasive intracranial pressure monitoring data were obtained through analysis of intracranial pressure waveform morphology, this information was uploaded to Brain4care® cloud algorithm for analysis. The cloud automatically sends a report containing intracranial pressure parameters. In total, 4881 data points were collected during the six months of follow-up. The intracranial pressure parameters (time to peak and P2/P1 ratio) were significantly higher in predialysis when compared to postdialysis for the three weekly sessions and throughout the follow-up period (p<0.01) data showed general improvement in brain compliance after the hemodialysis session. Furthermore, intracranial pressure parameters were significantly higher in the first weekly hemodialysis session (p<0.05). In conclusion, there were significant differences between pre and postdialysis intracranial pressure in patients with ESRD on hemodialysis. Additionally, the pattern of the intracranial pressure alterations was consistent over time suggesting that hemodialysis can improve time to peak and P2/P1 ratio which may reflect in brain compliance.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0240570PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8297761PMC
July 2021

Characterization of Intracranial Pressure Behavior in Chronic Epileptic Animals: A Preliminary Study.

Acta Neurochir Suppl 2016 ;122:329-33

Physics Institute of Sao Carlos, University of Sao Paulo, Sao Carlos, Brazil.

Intracranial pressure (ICP) is a major neurological parameter in animals and humans. ICP is a function of the relationship between the contents of the cranium (brain parenchyma, cerebrospinal fluid, and blood) and the volume of the skull. Increased ICP can cause serious physiological effects or even death in patients who do not quickly receive proper care, which includes ICP monitoring. Epilepsies are a set of central nervous system disorders resulting from abnormal and excessive neuronal discharges, usually associated with hypersynchronism and/or hyperexcitability. Temporal lobe epilepsy (TLE) is one of the most common forms of epilepsy and is also refractory to medication. ICP characteristics of subjects with epilepsy have not been elucidated because there are few studies associating these two important neurological factors. In this work, an invasive (ICPi) and the new minimally invasive (ICPmi) methods were used to evaluate ICP features in rats with chronic epilepsy, induced by the experimental model of pilocarpine, capable of generating the main features of human TLE in these animals.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-319-22533-3_65DOI Listing
July 2017

Characterization of ICP Behavior in an Experimental Model of Hemorrhagic Stroke in Rats.

Acta Neurochir Suppl 2016 ;122:121-4

Physics Institute of Sao Carlos, University of Sao Paulo, Sao Carlos, Brazil.

Intracranial pressure (ICP) monitoring is sometimes required in clinical pictures of stroke, as extensive intraparenchymal hematomas and intracranial bleeding may severely increase ICP, which can lead to irreversible conditions, such as dementia and cognitive derangement. ICP monitoring has been accepted as a procedure for the safe diagnosis of increased ICP, and for the treatment of intracranial hypertension in some diseases. In this work, we evaluated ICP behavior during the induction of an experimental model of autologous blood injection in rats, simulating a hemorrhagic stroke. Rats were subjected to stereotactic surgery for the implantation of a unilateral cannula into the left striatal region of the brain. Autologous blood was infused into the left striatal region with an automatic microinfusion pump. ICP monitoring was performed throughout the procedure of hemorrhagic stroke induction. Analyses consisted of short-time Fourier transform for ICP before and after stroke induction and the histological processing of the animals' brains. Short-time Fourier transform analysis demonstrated oscillations in the ICP frequency components throughout time after the microinjections compared with data before them. Histological analysis revealed neuropathological changes in the striatum in all microinjected animals.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-319-22533-3_24DOI Listing
July 2017
-->