Publications by authors named "Guoyou Zou"

8 Publications

  • Page 1 of 1

lncRNA FER1L4 is dysregulated in osteoarthritis and regulates IL-6 expression in human chondrocyte cells.

Sci Rep 2021 Jun 22;11(1):13032. Epub 2021 Jun 22.

Department of Orthopedics, The Fourth Affiliated Hospital of Nantong University, 166 Yulong West Road, Yancheng, 224005, Jiangsu, People's Republic of China.

Osteoarthritis (OA) is the most prevalent joint disease and is one of the major causes of disability in the world. There has been an increase in the incidence of OA, which is associated with an aging population, sedentary lifestyle, and reduced physical activity. Due to the complex OA pathogenesis, there are limited diagnostic tools. OA is a degenerative joint disorder with a recognized inflammatory component, usually described as abnormal expression of inflammatory factors. For instance, interleukin 6 (IL-6) has been shown to be upregulated in serum and synovial fluid among patients with OA. Most of the inflammatory factors have been associated with the expression of long noncoding RNAs (lncRNAs). However, the role of the novel lncRNA Fer-1-like protein 4 (FER1L4) in OA is yet to be determined. Here, we interrogated the expression profile of FER1L4 in patients with OA to define its potential application as a diagnostic marker. We collected synovial fluid and blood samples from both OA cases and normal controls. Using qRT-PCR, we evaluated the expression of FER1L4 in plasma and synovial fluid. On the other hand, the expression of IL-6 in plasma and synovial fluid was assessed using ELISA. Besides, the effect of age, gender or disease stage in the expression of the FER1L4 in plasma was also estimated. Moreover, the receiver operating characteristic (ROC) curves were used to determine the impact of FER1L4 in OA cases compared with the normal controls. In addition, we analyzed the correlation between FER1L4 and IL-6 through Pearson correlation analysis. Also, IL-6 expression in overexpressed FER1L4 samples was detected in chondrocytes through western blot analysis, while FER1L4 expression following endogenous IL-6 exposure was detected by qRT-PCR. Our data showed that whereas lncRNA FER1L4 is downregulated in OA patients, IL-6 is upregulated. The plasma FER1L4 levels among the OA cases were suppressed with disease progression and old age, and the down-regulation could efficiently discriminate OA patients from normal subjects. In addition, upregulation of FER1L4 inhibited IL-6 expression in human chondrocyte cells, and treatment with different concentrations of exogenous IL-6 did not affect the expression of FER1L4. Taken together, our data demonstrates that FER1L4 could efficiently identify OA cases from normal subjects, and can also modulate the expression of IL-6 in human chondrocytes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-021-92474-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8219729PMC
June 2021

Dencichine prevents ovariectomy-induced bone loss and inhibits osteoclastogenesis by inhibiting RANKL-associated NF-κB and MAPK signaling pathways.

J Pharmacol Sci 2021 Aug 3;146(4):206-215. Epub 2021 May 3.

Department of Orthopaedics, Yancheng City No.1 People's Hospital, Yancheng, Jiangsu 224006, China. Electronic address:

Aims: To investigate the effect of dencichine on osteoclastogenesis in vivo and in vitro.

Methods: RANKL-induced osteoclastogenesis were treated with different concentrations of dencichine. Pit forming assays were applied to evaluate the degree of bone resorption. Osteoclastogenic markers were detected by real-time quantitative PCR (RT-qPCR) and Western blot. Micro CT was conducted to investigate the effects of dencichine on osteoclastogenesis in ovariectomized (OVX) mice.

Results: Dencichine suppressed osteoclastogenesis through the inhibition of phosphorylation of p65, p50 (NF-κB pathway), p38, ERK and JNK (MAPKs pathway) in vitro. Furthermore, dencichine inhibited the function of osteoclasts in a dose-dependent manner. In addition, the expression levels of the nuclear factor of activated T cells 1 (NFATc1) and osteoclastogenesis markers were decreased by dencichine, including MMP-9, Cathepsin K (CTSK), Tartrate-Resistant Acid Phosphatase (TRAP), C-FOS, dendritic cell specific transmembrane protein (DC-STAMP). In vivo data proved that dencichine alleviated ovariectomy-induced bone loss and osteoclastogenesis in mice.

Conclusion: Our results demonstrate that dencichine alleviates OVX-induced bone loss in mice and inhibits RANKL-mediated osteoclastogenesis via inhibition of NF-κB and MAPK pathways in vitro, suggesting that dencichine might serve as a promising candidate for treatment of bone loss diseases, including PMOP and rheumatoid arthritis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jphs.2021.04.004DOI Listing
August 2021

Circular RNA_0062582 promotes osteogenic differentiation of human bone marrow mesenchymal stem cells via regulation of microRNA-145/CBFB axis.

Bioengineered 2021 12;12(1):1952-1963

Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R.China.

Osteoporosis poses a threat to human health worldwide. To date, there have been few studies regarding targeted treatment of osteoporosis. We aimed to identify the possible molecular mechanism of circular RNA (circ)_0062582 in osteogenic differentiation, and the interactions among circ_0062582, microRNA-145 (miR-145) and core-binding factor subunit β (CBFB). The proliferation of human bone marrow mesenchymal stem cells (hBMSCs) was tested with a cell counting kit-8 assay. Circ_0062582, miR-145 and CBFB were overexpressed by transient transfection. Dual-luciferase reporter assay system was used to analyze the combination among circ_0062582, miR-145 and CBFB. Additionally, the levels of circ_0062582, miR-145, CBFB, osterix (OSX), osteocalcin (OCN) and collagen type 1 (COL1) were detected by means of RT-qPCR or western blot analysis. Alkaline phosphatase and Alizarin red stainings were performed to analyze the degree of osteogenic differentiation under the control of circ_0062582, miR-145 and CBFB. The results demonstrated that circ_0062582 level was notably elvated during osteogenic differentiation of hBMSCs. Circ_0062582 overexpression significantly promoted osteogenic differentiation and upregulated the levels of osteogenic differentiation-related proteins, including OSX, OCN and COL1. In addition, miR-145, which was identified as the target gene of circ_0062582, could specifically target CBFB 3'-UTR regions. Next, these changes caused by the overexpression of circ_0062582 were reversed following the addition of miR-145 mimic. Following overexpression of CBFB, osteogenic differentiation was increased. In summary, these results demonstrated that the role of circ_0062582 in osteoporosis is mediated through regulating the expression level of CBFB via miR-145.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/21655979.2021.1921553DOI Listing
December 2021

N6-Methyladenosine Induced miR-34a-5p Promotes TNF-α-Induced Nucleus Pulposus Cell Senescence by Targeting SIRT1.

Front Cell Dev Biol 2021 5;9:642437. Epub 2021 Mar 5.

Department of Orthopaedics, The Affiliated Shanghai General Hospital of Nanjing Medical University, Shanghai, China.

Low back pain is tightly associated with intervertebral disc degeneration (IVDD) and aberrant nucleus pulposus (NP) is a critical cause. miRNAs N6-methyladenosine (m6A) modification accounts for the TNF-α-induced senescence of NP cells. The aim of this study was to investigate whether m6A modification regulates TNF-α-mediated cell viability, cell cycle arrest, and cell senescence and how it works. The results showed that METTL14 expression positively correlated with m6A and TNF-α expression in HNPCs. The knockdown of METTL14 led to the inhibition of the TNF-α-induced cell senescence. METTL14 overexpression promoted cell senescence. METTL14 regulated the m6A modification of miR-34a-5p and interacted with DGCR8 to process miR-34a-5p. The miR-34a-5p inhibitor inhibited the cell cycle senescence of HNPCs. miR-34a-5p was predicted to interact with the SIRT1 mRNA. SIRT1 overexpression counteracted the miR-34a-5p-promoted cell senescence. METTL14 participates in the TNF-α-induced m6A modification of miR-34a-5p to promote cell senescence in HNPCs and NP cells of IVDD patients. Downregulation of either METTL14 expression or miR-34a-5p leads to the inhibition of cell cycle arrest and senescence. SIRT1 mRNA is an effective binding target of miR-34a-5p, and SIRT1 overexpression mitigates the cell cycle arrest and senescence caused by miR-34a-5p.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fcell.2021.642437DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7982913PMC
March 2021

Ubiquitin conjugating enzyme E2 M promotes apoptosis in osteoarthritis chondrocytes via Wnt/β-catenin signaling.

Biochem Biophys Res Commun 2020 09 30;529(4):970-976. Epub 2020 Jul 30.

Department of Orthopaedics, The Fourth Affiliated Hospital of Nantong University, Yancheng, 224005, PR China. Electronic address:

In this study, the role of ubiquitin conjugating enzyme E2 M (UBE2M) and molecular mechanisms associated with osteoarthritis (OA) were explored. Cartilage tissues and corresponding healthy tissues from OA patients were isolated. Our data suggested that the expression level of UBE2M in OA patients was significantly higher compared to that in healthy individuals (P < 0.01). The apoptosis of human OA chondrocytes was inhibited when silencing UBE2M and increased when overexpressing UBE2M. XAV939, as a tankyrase 1 inhibitor, could block the signaling pathway of Wnt/β-catenin, which significantly reversed the change introduced by UBE2M. The expression level of cytoplasmic β-catenin in siUBE2M cells dramatically increased, and the expression levels of nuclear β-catenin, cleaved caspase-3 (C-caspase-3), and MMP13 remarkably downregulated. Moreover, the ubiquitination of Axin was enhanced by the overexpression of UBE2M. The expression level of Axin significantly decreased in OA chondrocytes with UBE2M overexpression and increased after MG132 treatment. Moreover, UBE2M enhanced the apoptosis of OA chondrocytes by activating the Axin-dependent Wnt/β-catenin pathway. In this process, UBE2M downregulated Axin in an ubiquitination-dependent degradation pathway and subsequently activated Wnt/β-catenin signaling.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2020.06.095DOI Listing
September 2020

Autologous platelet-rich plasma therapy for refractory pain after low-grade medial collateral ligament injury.

J Int Med Res 2020 Feb;48(2):300060520903636

Department of Orthopedics, the First People's Hospital of Yancheng, Yancheng, Jiangsu, China.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1177/0300060520903636DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7111026PMC
February 2020

Knockdown Of lncRNA NCK-AS1 Regulates Cisplatin Resistance Through Modulating miR-137 In Osteosarcoma Cells.

Onco Targets Ther 2019 16;12:11057-11068. Epub 2019 Dec 16.

Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, People's Republic of China.

Purpose: Long non-coding RNAs (lncRNAs) have been proved to act crucial parts in the progress of human tumor. However, the role of lncRNAs in drug resistance of tumor cells remains to be further elucidated. The present study aimed to explore whether lncRNA NCK-AS1 could affect the cisplatin (DDP) resistance in human osteosarcoma cell and the underlying molecular mechanism.

Methods: The expression of NCK1-AS1 and miR-137 in osteosarcoma cells was detected by qRT-PCR. CCK-8 assay, colony formation assay, Western blotting, wound healing assay and transwell assay were employed to assess the cell proliferation, migration and invasion. In addition, CCK-8 assay, flow cytometry, qRT-PCR and resistance gene activity analysis were performed to assess the DDP sensitivity of osteosarcoma cells. The interaction between NCK1-AS1 and miR-137 was identified using a dual-luciferase reporter gene assay and RNA immunoprecipitation (RIP) assay.

Results: The results revealed that NCK1-AS1 was significantly upregulated in osteosarcoma cells, as well as in DDP-resistant osteosarcoma cells. NCK1-AS1 silence inhibited the proliferation, migration and invasion of osteosarcoma cells, whereas enhanced the sensitivity of osteosarcoma cells to DDP. Furthermore, NCK1-AS1 directly interacted with miR-137 and overexpression of miR-137 suppressed the proliferation, migration and invasion of osteosarcoma cells. Most importantly, miR-137 overexpression enhanced the sensitivity of osteosarcoma cells to DDP, and high expression of NCK1-AS1 reversed the influences of miR-137 overexpression on DDP-resistant cells.

Conclusion: In short, NCK1-AS1 knockdown enhanced DDP sensitivity of osteosarcoma cells by regulating miR-137, which may be a novel potential target for anti-DDP resistance in human osteosarcoma.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2147/OTT.S228199DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6924660PMC
December 2019

Antitumor activity of dobutamine on human osteosarcoma cells.

Oncol Lett 2016 Jun 20;11(6):3676-3680. Epub 2016 Apr 20.

School of Medicine, University of California, San Diego, CA 92103, USA; Tianjin Sunnypeak Biotech Co., Ltd., Tianjin 300457, P.R. China.

Dobutamine has been widely used for the treatment of heart failure and cardiogenic shock since the 1970s. Osteosarcoma is the most commonly observed malignant bone tumor in children. Currently, there are no effective drugs for the treatment of osteosarcoma. In the present study, the potential anticancer activity of dobutamine on human osteosarcoma cells was examined. Human osteosarcoma MG-63 cells were treated with dobutamine at various concentrations and for various incubation times. The inhibition of cell growth by dobutamine was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Flow cytometry was utilized to evaluate the effect of dobutamine on cell apoptosis and the cell cycle. Furthermore, the expression levels of caspase-3 and caspase-9 were assessed by western blot analysis. The influence of dobutamine on cancer cell migration and invasion was additionally evaluated using wound-healing assay and the Boyden Chamber migration method. Dobutamine significantly inhibited the growth of MG-63 cells at a concentration of 10 µM or higher when incubated for 12 h or longer (P=0.023). Dobutamine augmented cell apoptosis and arrested the cell cycle in the G2/M phase. Western blot analysis revealed that dobutamine induces expression of caspase-3 and caspase-9. In addition, the invasiveness and migration of MG-63 cells was inhibited by dobutamine in a concentration-dependent manner. The results of the present study may lead to novel applications for dobutamine in the treatment of osteosarcoma.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3892/ol.2016.4479DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4887865PMC
June 2016