Publications by authors named "Guo Yong Yew"

8 Publications

  • Page 1 of 1

Advances in production of bioplastics by microalgae using food waste hydrolysate and wastewater: A review.

Bioresour Technol 2021 Sep 17;342:125947. Epub 2021 Sep 17.

Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia. Electronic address:

Microalgae have emerged as an effective dual strategy for bio-valorisation of food processing wastewater and food waste hydrolysate which favours microalgae cultivation into producing value-added by products mainly lipids, carbohydrates, and proteins to the advantages of bioplastic production. Moreover, various microalgae have successfully removed high amount of organic pollutants from food processing wastewater prior discharging into the environment. Innovation of microalgae cultivating in food processing wastewater greatly reduced the cost of wastewater treatment compared to conventional approach in terms of lower carbon emissions, energy consumption, and chemical usage while producing microalgae biomass which can benefit low-cost fertilizer and bioplastic applications. The study on several microalgae species has all successfully grown on food waste hydrolysates showing high exponential growth rate and biomass production rich in proteins, lipids, carbohydrates, and fatty acids. Multiple techniques have been implemented for the extraction of food wastes to be incorporate into the bioplastic production.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2021.125947DOI Listing
September 2021

Recent advances on food waste pretreatment technology via microalgae for source of polyhydroxyalkanoates.

J Environ Manage 2021 Sep 27;293:112782. Epub 2021 May 27.

Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia. Electronic address:

Polyhydroxyalkanoates (PHAs) are biodegradable and biocompatible polyester which are biosynthesized from the intracellular cells of microalgae through the cultivation of organic food waste medium. Before cultivation process, food waste must undergo several pre-treatment techniques such as chemical, biological, physical or mechanical in order to solubilize complex food waste matter into simpler micro- and macronutrients in which allow bio-valorisation of microalgae and food waste compound during the cultivation process. This work reviews four microalgae genera namely Chlamydomonas, Chlorella, Spirulina, and Botryococcus, are selected as suitable species due to rapid growth rate, minimal nutrient requirement, greater adaptability and flexibility prior to lower the overall production cost and maximized the production of PHAs. This study also focuses on the different mode of cultivation for the accumulation of PHAs followed by cell wall destabilization, extraction, and purification. Nonetheless, this review provides future insights into enhancing the productivity of bioplastic derived from microalgae towards low-cost, large-scale, and higher productivity of PHAs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2021.112782DOI Listing
September 2021

Selection, purification, and evaluation of acarbose-an α-glucosidase inhibitor from Actinoplanes sp.

Chemosphere 2021 Feb 2;265:129167. Epub 2020 Dec 2.

Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia. Electronic address:

Actinoplanes sp. A1094 strain had been selected for its high production of acarbose from 20 different strains of Actinoplanes sp. can be found in wild. The content for glucosidase inhibitor of acarbose concentration was recorded at 1.12 g/L. The conducted analysis of 16S rRNA sequence of Actinoplanes sp. A1094 showed 99% similar identity to the corresponding sequence of Actinoplanes hulinensis. Acarbose was purified from Actinoplanes hulinensis 1094 with a yield of 8.48%, purity of 98% and further identified by LC/MS and NMR methods (CHNO; m/z: 645.6 g/mol). The purified acarbose was used to evaluate the hypoglycemia in streptozotocin (STZ)-induced diabetic mice model. The purified acarbose reduced postprandial blood glucose level in comparison with Glucobay® as medication for control type 2 diabetes in a combination therapy. Notably, the outcomes of native acarbose on fasting blood glucose levels in mice resemble akin to the commercial product and the acarbose accumulating fermentation and metabolic engineering from the cell gene in which would reduce in production cost. Therefore, acarbose from Actinoplanes hulinensis 1094 could be potentially used to make products for the treatment of type II diabetes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2020.129167DOI Listing
February 2021

Microalgae with artificial intelligence: A digitalized perspective on genetics, systems and products.

Biotechnol Adv 2020 11 12;44:107631. Epub 2020 Sep 12.

Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan. Electronic address:

With recent advances in novel gene-editing tools such as RNAi, ZFNs, TALENs, and CRISPR-Cas9, the possibility of altering microalgae toward designed properties for various application is becoming a reality. Alteration of microalgae genomes can modify metabolic pathways to give elevated yields in lipids, biomass, and other components. The potential of such genetically optimized microalgae can give a "domino effect" in further providing optimization leverages down the supply chain, in aspects such as cultivation, processing, system design, process integration, and revolutionary products. However, the current level of understanding the functional information of various microalgae gene sequences is still primitive and insufficient as microalgae genome sequences are long and complex. From this perspective, this work proposes to link up this knowledge gap between microalgae genetic information and optimized bioproducts using Artificial Intelligence (AI). With the recent acceleration of AI research, large and complex data from microalgae research can be properly analyzed by combining the cutting-edge of both fields. In this work, the most suitable class of AI algorithms (such as active learning, semi-supervised learning, and meta-learning) are discussed for different cases of microalgae applications. This work concisely reviews the current state of the research milestones and highlight some of the state-of-art that has been carried out, providing insightful future pathways. The utilization of AI algorithms in microalgae cultivation, system optimization, and other aspects of the supply chain is also discussed. This work opens the pathway to a digitalized future for microalgae research and applications.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biotechadv.2020.107631DOI Listing
November 2020

Integrated ultrasound-assisted liquid biphasic flotation for efficient extraction of astaxanthin from Haematococcus pluvialis.

Ultrason Sonochem 2020 Oct 4;67:105052. Epub 2020 Mar 4.

Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia. Electronic address:

The purpose of this investigation is to evaluate the implementation of ultrasound-assisted liquid biphasic flotation (LBF) system for the recovery of natural astaxanthin from Haematococcus pluvialis microalgae. Various operating conditions of ultrasound-assisted LBF systems such as the position of ultrasound horn, mode of ultrasonication (pulse and continuous), amplitude of ultrasonication, air flowrate, duration of air flotation, and mass of H. pluvialis microalgae were evaluated. The effect of ultrasonication on the cellular morphology of microalgae was also assessed using microscopic analysis. Under the optimized operating conditions of UALBF, the maximum recovery yield, extraction efficiency, and partition coefficient of astaxanthin were 95.08 ± 3.02%, 99.74 ± 0.05%, and 185.09 ± 4.78, respectively. In addition, the successful scale-up operation of ultrasound-assisted LBF system verified the practicability of this integrated approach for an effective extraction of natural astaxanthin.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultsonch.2020.105052DOI Listing
October 2020

Recent advances in downstream processing of microalgae lipid recovery for biofuel production.

Bioresour Technol 2020 May 11;304:122996. Epub 2020 Feb 11.

Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan; Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan. Electronic address:

The world energy system faces two major challenges: the requirement for more energy and less carbon. It is important to address biofuels production as an alternative to the usage of fossil fuel by utilizing microalgae as the potential feedstock. Yet, the commercialization of microalgae remains contentious caused by factors relating to the life cycle assessment and feasibility of microalgae-based biofuels. This present review starts with an introduction to the benefits of microalgae, followed by intensive elaboration on microalgae cultivation parameters. Subsequently, the fundamental principle along with the advantages and disadvantages of various pretreatment techniques of microalgae were reviewed. In addition, the conventional and recent advances in lipid extraction techniques from microalgae were comprehensively evaluated. Comparative analysis regard to the gaps from previous studies was discussed point-by-point in each section. The effort presented in this review will provide an insight for future researches dealing with microalgae-biofuel production on downstream processing.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2020.122996DOI Listing
May 2020

Unlocking the Secret of Bio-additive Components in Rubber Compounding in Processing Quality Nitrile Glove.

Appl Biochem Biotechnol 2020 May 31;191(1):1-28. Epub 2020 Jan 31.

Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan, 701, Taiwan.

The sustainability of nitrile glove production process is essential both in the financial and energy perspective. Nitrile glove has the lowest material cost with positive mechanical and chemical performance quality for the disposable glove market. Nitrile glove also holds a major market in disposable gloves sector, and nitrile rubber compounds may contribute to the huge reduction of the capital cost for a pair of surgical gloves due to the inexpensive raw material compares with other synthetic polyisoprene or neoprene. Hence, blending of bio-additive into the nitrile latex might support the 3 pillars of sustainability for environmental, societal, and financial sector. Bio-additives helps increase the degradation rate of gloves under natural conditions. Bio-based substances could be derived from food waste, natural plants, and aquatic plants like micro- and macro algae. Furthermore, antimicrobial agent (e.g. brilliant green and cyclohexadiene) is the trend in surgical glove for coated as protecting layer, due to the capability to remove pathogens or bacterial on the surgeon hands during operation period. Besides, the section in energy recovery is a proposing gateway for reducing the financial cost and makes the process sustainable.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-019-03207-7DOI Listing
May 2020

Hybrid liquid biphasic system for cell disruption and simultaneous lipid extraction from microalgae CY-1 for biofuel production.

Biotechnol Biofuels 2019 25;12:252. Epub 2019 Oct 25.

1Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Malaysia.

Background: The extraction of lipids from microalgae requires a pretreatment process to break the cell wall and subsequent extraction processes to obtain the lipids for biofuels production. The multistep operation tends to incur high costs and are energy intensive due to longer process operations. This research work applies the combination of radicals from hydrogen peroxide with an organic solvent as a chemical pretreatment method for disrupting the cell wall of microalgae and simultaneously extracting lipids from the biomass in a one-step biphasic solution.

Result: Several parameters which can affect the biphasic system were analyzed: contact time, volume of solvent, volume ratio, type of organic solvent, biomass amount and concentration of solvents, to extract the highest amount of lipids from microalgae. The results were optimized and up to 83.5% of lipid recovery yield and 94.6% of enhancement was successfully achieved. The results obtain from GC-FID were similar to the analysis of triglyceride lipid standard.

Conclusion: The profound hybrid biphasic system shows great potential to radically disrupt the cell wall of microalgae and instantaneously extract lipids in a single-step approach. The lipids extracted were tested to for its comparability to biodiesel performance.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13068-019-1591-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6813982PMC
October 2019
-->