Publications by authors named "Gulnar Mangat"

1 Publications

  • Page 1 of 1

Late-emigrating trunk neural crest cells in turtle embryos generate an osteogenic ectomesenchyme in the plastron.

Dev Dyn 2013 Nov 6;242(11):1223-35. Epub 2013 Sep 6.

Biology Department, Millersville University, Millersville, Pennsylvania.

Background: The turtle plastron is composed of a keratinized epidermis overlying nine dermal bones. Its developmental origin has been controversial; recent evidence suggests that the plastral bones derive from trunk neural crest cells (NCCs).

Results: This study extends the observations that there is a turtle-specific, second wave of trunk NCC delamination and migration, after the original NCCs have reached their destination and differentiated. This second wave was confirmed by immunohistochemistry in whole-mounts and serial sections, by injecting DiI (1,1', di-octadecyl-3,3,3',3',-tetramethylindo-carbocyanine perchlorate) into the lumen of the neural tube and tracing labeled cells into the plastron, and by isolating neural tubes from older turtle embryos and observing delaminating NCCs. This later migration gives rise to a plastral ectomesenchyme that expresses NCC markers and can be induced to initiate bone formation.

Conclusions: The NCCs of this second migration have properties similar to those of the earlier NCCs, but also express markers characteristic of cranial NCCs. The majority of the cells of the plastron mesenchyme express neural crest markers, and have osteogenic differentiation capabilities that are similar or identical to craniofacial ectomesenchyme. Our evidence supports the contention that turtle plastron bones are derived from a late emigrating population of cells derived from the trunk neural crest.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/dvdy.24018DOI Listing
November 2013