Publications by authors named "Gregor Eisenwort"

34 Publications

Asciminib and ponatinib exert synergistic anti-neoplastic effects on CML cells expressing -compound mutations.

Am J Cancer Res 2021 15;11(9):4470-4484. Epub 2021 Sep 15.

Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna Austria.

Ponatinib is a tyrosine kinase inhibitor (TKI) directed against BCR-ABL1 which is successfully used in patients with + chronic myeloid leukemia (CML). However, compound mutations may develop during therapy in these patients and may lead to drug resistance. Asciminib is a novel drug capable of targeting most BCR-ABL1 mutant-forms, including BCR-ABL1, but remains ineffective against most BCR-ABL1+ compound mutation-bearing sub-clones. We demonstrate that asciminib synergizes with ponatinib in inducing growth-arrest and apoptosis in patient-derived CML cell lines and murine Ba/F3 cells harboring or T315I-including compound mutations. Asciminib and ponatinib also produced cooperative effects on CRKL phosphorylation in BCR-ABL1-transformed cells. The growth-inhibitory effects of the drug combination 'asciminib+ponatinib' was further enhanced by hydroxyurea (HU), a drug which has lately been described to suppresses the proliferation of + CML cells. Cooperative drug effects were also observed in patient-derived CML cells. Most importantly, we were able to show that the combinations 'asciminib+ponatinib' and 'asciminib+ponatinib+HU' produce synergistic apoptosis-inducing effects in CD34/CD38 CML stem cells obtained from patients with chronic phase CML or + CML blast phase. Together, asciminib, ponatinib and HU synergize in producing anti-leukemic effects in multi-resistant CML cells, including cells harboring T315I+ compound mutations and CML stem cells. The clinical efficacy of this TKI combination needs to be evaluated within the frame of upcoming clinical trials.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8493398PMC
September 2021

DNA hypomethylation leads to cGAS-induced autoinflammation in the epidermis.

EMBO J 2021 Sep 29:e108234. Epub 2021 Sep 29.

Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.

DNA methylation is a fundamental epigenetic modification, important across biological processes. The maintenance methyltransferase DNMT1 is essential for lineage differentiation during development, but its functions in tissue homeostasis are incompletely understood. We show that epidermis-specific DNMT1 deletion severely disrupts epidermal structure and homeostasis, initiating a massive innate immune response and infiltration of immune cells. Mechanistically, DNA hypomethylation in keratinocytes triggered transposon derepression, mitotic defects, and formation of micronuclei. DNA release into the cytosol of DNMT1-deficient keratinocytes activated signaling through cGAS and STING, thus triggering inflammation. Our findings show that disruption of a key epigenetic mark directly impacts immune and tissue homeostasis, and potentially impacts our understanding of autoinflammatory diseases and cancer immunotherapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.15252/embj.2021108234DOI Listing
September 2021

Phenotypic characterization of leukemia-initiating stem cells in chronic myelomonocytic leukemia.

Leukemia 2021 Mar 30. Epub 2021 Mar 30.

Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria.

Chronic myelomonocytic leukemia (CMML) is a stem cell-derived neoplasm characterized by dysplasia, uncontrolled expansion of monocytes, and substantial risk to transform to secondary acute myeloid leukemia (sAML). So far, little is known about CMML-initiating cells. We found that leukemic stem cells (LSC) in CMML reside in a CD34/CD38 fraction of the malignant clone. Whereas CD34/CD38 cells engrafted NSGS mice with overt CMML, no CMML was produced by CD34/CD38 progenitors or the bulk of CD34 monocytes. CMML LSC invariably expressed CD33, CD117, CD123 and CD133. In a subset of patients, CMML LSC also displayed CD52, IL-1RAP and/or CLL-1. CMML LSC did not express CD25 or CD26. However, in sAML following CMML, the LSC also expressed CD25 and high levels of CD114, CD123 and IL-1RAP. No correlations between LSC phenotypes, CMML-variant, mutation-profiles, or clinical course were identified. Pre-incubation of CMML LSC with gemtuzumab-ozogamicin or venetoclax resulted in decreased growth and impaired engraftment in NSGS mice. Together, CMML LSC are CD34/CD38 cells that express a distinct profile of surface markers and target-antigens. During progression to sAML, LSC acquire or upregulate certain cytokine receptors, including CD25, CD114 and CD123. Characterization of CMML LSC should facilitate their enrichment and the development of LSC-eradicating therapies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41375-021-01227-zDOI Listing
March 2021

Nintedanib targets KIT D816V neoplastic cells derived from induced pluripotent stem cells of systemic mastocytosis.

Blood 2021 04;137(15):2070-2084

Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, Aachen, Germany.

The KIT D816V mutation is found in >80% of patients with systemic mastocytosis (SM) and is key to neoplastic mast cell (MC) expansion and accumulation in affected organs. Therefore, KIT D816V represents a prime therapeutic target for SM. Here, we generated a panel of patient-specific KIT D816V induced pluripotent stem cells (iPSCs) from patients with aggressive SM and mast cell leukemia to develop a patient-specific SM disease model for mechanistic and drug-discovery studies. KIT D816V iPSCs differentiated into neoplastic hematopoietic progenitor cells and MCs with patient-specific phenotypic features, thereby reflecting the heterogeneity of the disease. CRISPR/Cas9n-engineered KIT D816V human embryonic stem cells (ESCs), when differentiated into hematopoietic cells, recapitulated the phenotype observed for KIT D816V iPSC hematopoiesis. KIT D816V causes constitutive activation of the KIT tyrosine kinase receptor, and we exploited our iPSCs and ESCs to investigate new tyrosine kinase inhibitors targeting KIT D816V. Our study identified nintedanib, a US Food and Drug Administration-approved angiokinase inhibitor that targets vascular endothelial growth factor receptor, platelet-derived growth factor receptor, and fibroblast growth factor receptor, as a novel KIT D816V inhibitor. Nintedanib selectively reduced the viability of iPSC-derived KIT D816V hematopoietic progenitor cells and MCs in the nanomolar range. Nintedanib was also active on primary samples of KIT D816V SM patients. Molecular docking studies show that nintedanib binds to the adenosine triphosphate binding pocket of inactive KIT D816V. Our results suggest nintedanib as a new drug candidate for KIT D816V-targeted therapy of advanced SM.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood.2019004509DOI Listing
April 2021

Delineation of target expression profiles in CD34+/CD38- and CD34+/CD38+ stem and progenitor cells in AML and CML.

Blood Adv 2020 10;4(20):5118-5132

Ludwig Boltzmann Institute for Hematology and Oncology.

In an attempt to identify novel markers and immunological targets in leukemic stem cells (LSCs) in acute myeloid leukemia (AML) and chronic myeloid leukemia (CML), we screened bone marrow (BM) samples from patients with AML (n = 274) or CML (n = 97) and controls (n = 288) for expression of cell membrane antigens on CD34+/CD38- and CD34+/CD38+ cells by multicolor flow cytometry. In addition, we established messenger RNA expression profiles in purified sorted CD34+/CD38- and CD34+/CD38+ cells using gene array and quantitative polymerase chain reaction. Aberrantly expressed markers were identified in all cohorts. In CML, CD34+/CD38- LSCs exhibited an almost invariable aberration profile, defined as CD25+/CD26+/CD56+/CD93+/IL-1RAP+. By contrast, in patients with AML, CD34+/CD38- cells variably expressed "aberrant" membrane antigens, including CD25 (48%), CD96 (40%), CD371 (CLL-1; 68%), and IL-1RAP (65%). With the exception of a subgroup of FLT3 internal tandem duplication-mutated patients, AML LSCs did not exhibit CD26. All other surface markers and target antigens detected on AML and/or CML LSCs, including CD33, CD44, CD47, CD52, CD105, CD114, CD117, CD133, CD135, CD184, and roundabout-4, were also found on normal BM stem cells. However, several of these surface targets, including CD25, CD33, and CD123, were expressed at higher levels on CD34+/CD38- LSCs compared with normal BM stem cells. Moreover, antibody-mediated immunological targeting through CD33 or CD52 resulted in LSC depletion in vitro and a substantially reduced LSC engraftment in NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice. Together, we have established surface marker and target expression profiles of AML LSCs and CML LSCs, which should facilitate LSC enrichment, diagnostic LSC phenotyping, and development of LSC-eradicating immunotherapies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1182/bloodadvances.2020001742DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7594398PMC
October 2020

Cell-based and antibody-mediated immunotherapies directed against leukemic stem cells in acute myeloid leukemia: Perspectives and open issues.

Stem Cells Transl Med 2020 11 13;9(11):1331-1343. Epub 2020 Jul 13.

Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, Vienna, Austria.

Despite new insights in molecular features of leukemic cells and the availability of novel treatment approaches and drugs, acute myeloid leukemia (AML) remains a major clinical challenge. In fact, many patients with AML relapse after standard therapy and eventually die from progressive disease. The basic concept of leukemic stem cells (LSC) has been coined with the goal to decipher clonal architectures in various leukemia-models and to develop curative drug therapies by eliminating LSC. Indeed, during the past few years, various immunotherapies have been tested in AML, and several of these therapies follow the strategy to eliminate relevant leukemic subclones by introducing LSC-targeting antibodies or LSC-targeting immune cells. These therapies include, among others, new generations of LSC-eliminating antibody-constructs, checkpoint-targeting antibodies, bi-specific antibodies, and CAR-T or CAR-NK cell-based strategies. However, responses are often limited and/or transient which may be due to LSC resistance. Indeed, AML LSC exhibit multiple forms of resistance against various drugs and immunotherapies. An additional problems are treatment-induced myelotoxicity and other side effects. The current article provides a short overview of immunological targets expressed on LSC in AML. Moreover, cell-based therapies and immunotherapies tested in AML are discussed. Finally, the article provides an overview about LSC resistance and strategies to overcome resistance.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/sctm.20-0147DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7581453PMC
November 2020

CDK4/CDK6 inhibition as a novel strategy to suppress the growth and survival of BCR-ABL1+ clones in TKI-resistant CML.

EBioMedicine 2019 Dec 21;50:111-121. Epub 2019 Nov 21.

Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, Austria. Electronic address:

Purpose: Ponatinib is the only approved tyrosine kinase inhibitor (TKI) suppressing BCR-ABL1-mutated cells in chronic myeloid leukemia (CML). However, due to side effects and resistance, BCR-ABL1-mutated CML remains a clinical challenge. Hydroxyurea (HU) has been used for cytoreduction in CML for decades. We found that HU suppresses or even eliminates BCR-ABL1+ sub-clones in heavily pretreated CML patients. Based on this observation, we investigated the effects of HU on TKI-resistant CML cells in vitro.

Methods: Viability, apoptosis and proliferation of drug-exposed primary CML cells and BCR-ABL1+ cell lines were examined by flow cytometry and H-thymidine-uptake. Expression of drug targets was analyzed by qPCR and Western blotting.

Findings: HU was more effective in inhibiting the proliferation of leukemic cells harboring BCR-ABL1 or T315I-including compound-mutations compared to cells expressing wildtype BCR-ABL1. Moreover, HU synergized with ponatinib and ABL001 in inducing growth inhibition in CML cells. Furthermore, HU blocked cell cycle progression in leukemic cells, which was accompanied by decreased expression of CDK4 and CDK6. Palbociclib, a more specific CDK4/CDK6-inhibitor, was also found to suppress proliferation in primary CML cells and to synergize with ponatinib in producing growth inhibition in BCR-ABL1+ cells, suggesting that suppression of CDK4/CDK6 may be a promising concept to overcome BCR-ABL1-associated TKI resistance.

Interpretation: HU and the CDK4/CDK6-blocker palbociclib inhibit growth of CML clones expressing BCR-ABL1 or complex T315I-including compound-mutations. Clinical studies are required to confirm single drug effects and the efficacy of `ponatinib+HU´ and ´ponatinib+palbociclib´ combinations in advanced CML.

Funding: This project was supported by the Austrian Science Funds (FWF) projects F4701-B20, F4704-B20 and P30625.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ebiom.2019.11.004DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6921367PMC
December 2019

Immunotherapy-Based Targeting and Elimination of Leukemic Stem Cells in AML and CML.

Int J Mol Sci 2019 Aug 29;20(17). Epub 2019 Aug 29.

Department of Internal Medicine V (Hematology & Oncology), Medical University of Innsbruck, 1090 Innsbruck, Austria.

The concept of leukemic stem cells (LSC) has been developed with the idea to explain the clonal hierarchies and architectures in leukemia, and the more or less curative anti-neoplastic effects of various targeted drugs. It is now widely accepted that curative therapies must have the potential to eliminate or completely suppress LSC, as only these cells can restore and propagate the malignancy for unlimited time periods. Since LSC represent a minor cell fraction in the leukemic clone, little is known about their properties and target expression profiles. Over the past few years, several cell-specific immunotherapy concepts have been developed, including new generations of cell-targeting antibodies, antibody-toxin conjugates, bispecific antibodies, and CAR-T cell-based strategies. Whereas such concepts have been translated and may improve outcomes of therapy in certain lymphoid neoplasms and a few other malignancies, only little is known about immunological targets that are clinically relevant and can be employed to establish such therapies in myeloid neoplasms. In the current article, we provide an overview of the immunologically relevant molecular targets expressed on LSC in patients with acute myeloid leukemia (AML) and chronic myeloid leukemia (CML). In addition, we discuss the current status of antibody-based therapies in these malignancies, their mode of action, and successful examples from the field.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms20174233DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6747233PMC
August 2019

Redistribution, homing and organ-invasion of neoplastic stem cells in myeloid neoplasms.

Semin Cancer Biol 2020 02 10;60:191-201. Epub 2019 Aug 10.

Institute of Anatomy and Experimental Morphology, University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

The development of a myeloid neoplasm is a step-wise process that originates from leukemic stem cells (LSC) and includes pre-leukemic stages, overt leukemia and a drug-resistant terminal phase. Organ-invasion may occur in any stage, but is usually associated with advanced disease and a poor prognosis. Sometimes, extra-medullary organ invasion shows a metastasis-like or even sarcoma-like destructive growth of neoplastic cells in local tissue sites. Examples are myeloid sarcoma, mast cell sarcoma and localized blast phase of chronic myeloid leukemia. So far, little is known about mechanisms underlying re-distribution and extramedullary dissemination of LSC in myeloid neoplasms. In this article, we discuss mechanisms through which LSC can mobilize out of the bone marrow niche, can transmigrate from the blood stream into extramedullary organs, can invade local tissue sites and can potentially create or support the formation of local stem cell niches. In addition, we discuss strategies to interfere with LSC expansion and organ invasion by targeted drug therapies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.semcancer.2019.07.025DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7115853PMC
February 2020

Molecular quantification of tissue disease burden is a new biomarker and independent predictor of survival in mastocytosis.

Haematologica 2020 31;105(2):366-374. Epub 2020 Jan 31.

Department of Laboratory Medicine, Medical University of Vienna, Vienna

A high allele burden of the D816V mutation in peripheral blood or bone marrow aspirates indicates multi-lineage hematopoietic involvement and has been associated with an aggressive clinical course of systemic mastocytosis. Since mast cells are substantially underrepresented in these liquid specimens, their mutation burden likely underestimates the tumor burden of the disease. We used a novel previously validated digital polymerase chain reaction (PCR) method for D816V analysis to systematically analyze the mutation burden in formalin-fixed, paraffin-embedded bone marrow tissue sections of 116 mastocytosis patients (91 with indolent and 25 with advanced systemic mastocytosis), and to evaluate for the first time the clinical value of the tissue mutation burden as a novel biomarker. The D816V mutation burden in the tissue was significantly higher and correlated better with bone marrow mast cell infiltration (r=0.68 0.48) and serum tryptase levels (r=0.68 0.58) compared to that in liquid specimens. Furthermore, the D816V tissue mutation burden was: (i) significantly higher in advanced than in indolent systemic mastocytosis (=0.001); (ii) predicted survival of patients in multivariate analyses independently; and (iii) was significantly reduced after response to cytoreductive therapy. Finally, digital PCR was more sensitive in detecting D816V in bone marrow sections of indolent systemic mastocytosis patients than melting curve analysis after peptide nucleic acid-mediated PCR clamping (97% 89%; <0.05). In summary, digital PCR-based measurement of D816V mutation burden in the tissue represents a novel biomarker with independent prognostic significance that can also be employed for monitoring disease progression and treatment response in systemic mastocytosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3324/haematol.2019.217950DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7012478PMC
April 2021

Identification of a leukemia-initiating stem cell in human mast cell leukemia.

Leukemia 2019 11 5;33(11):2673-2684. Epub 2019 Apr 5.

Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090, Vienna, Austria.

Mast cell leukemia (MCL) is a highly fatal malignancy characterized by devastating expansion of immature mast cells in various organs. Although considered a stem cell disease, little is known about MCL-propagating neoplastic stem cells. We here describe that leukemic stem cells (LSCs) in MCL reside within a CD34/CD38 fraction of the clone. Whereas highly purified CD34/CD38 cells engrafted NSG mice with fully manifesting MCL, no MCL was produced by CD34/CD38 progenitors or the bulk of KIT/CD34 mast cells. CD34/CD38 MCL cells invariably expressed CD13 and CD133, and often also IL-1RAP, but did not express CD25, CD26 or CLL-1. CD34/CD38 MCL cells also displayed several surface targets, including CD33, which was homogenously expressed on MCL LSCs in all cases, and the D816V mutant form of KIT. Although CD34/CD38 cells were resistant against single drugs, exposure to combinations of CD33-targeting and KIT-targeting drugs resulted in LSC-depletion and markedly reduced engraftment in NSG mice. Together, MCL LSCs are CD34/CD38 cells that express distinct profiles of markers and target antigens. Characterization of MCL LSCs should facilitate their purification and should support the development of LSC-eradicating curative treatment approaches in this fatal type of leukemia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41375-019-0460-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6839966PMC
November 2019

A kinase profile-adapted drug combination elicits synergistic cooperative effects on leukemic cells carrying BCR-ABL1 in Ph+ CML.

Leuk Res 2019 03 28;78:36-44. Epub 2018 Dec 28.

Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Austria. Electronic address:

In chronic myeloid leukemia (CML), resistance against second-generation tyrosine kinase inhibitors (TKI) remains a serious clinical challenge, especially in the context of multi-resistant BCR-ABL1 mutants, such as T315I. Treatment with ponatinib may suppress most of these mutants, including T315I, but is also associated with a high risk of clinically relevant side effects. We screened for alternative treatment options employing available tyrosine kinase inhibitors (TKI) in combination. Dasatinib and bosutinib are two second-generation TKI that bind to different, albeit partially overlapping, spectra of kinase targets in CML cells. This observation prompted us to explore anti-leukemic effects of the combination dasatinib + bosutinib in highly resistant primary CML cells, various CML cell lines (K562, K562R, KU812, KCL22) and Ba/F3 cells harboring various BCR-ABL1 mutant-forms. We found that bosutinib synergizes with dasatinib in inducing growth inhibition and apoptosis in all CML cell lines and in Ba/F3 cells exhibiting BCR-ABL1. Clear synergistic effects were also observed in primary CML cells in all patients tested (n = 20), including drug-resistant cells carrying BCR-ABL1. Moreover, the drug combination produced cooperative or even synergistic apoptosis-inducing effects on CD34/CD38 CML stem cells. Finally, we found that the drug combination is a potent approach to block the activity of major additional CML targets, including LYN, KIT and PDGFRα. Together, bosutinib and dasatinib synergize in producing anti-leukemic effects in drug-resistant CML cells. Whether such cooperative TKI effects also occur in vivo in patients with drug-resistant CML, remains to be determined in forthcoming studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.leukres.2018.12.013DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6834439PMC
March 2019

Comparative oncology: The paradigmatic example of canine and human mast cell neoplasms.

Vet Comp Oncol 2019 Mar 24;17(1):1-10. Epub 2018 Sep 24.

Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria.

In humans, advanced mast cell (MC) neoplasms are rare malignancies with a poor prognosis. Only a few preclinical models are available, and current treatment options are limited. In dogs, MC neoplasms are the most frequent malignant skin tumours. Unlike low-grade MC neoplasms, high-grade MC disorders usually have a poor prognosis with short survival. In both species, neoplastic MCs display activating KIT mutations, which are considered to contribute to disease evolution. Therefore, tyrosine kinase inhibitors against KIT have been developed. Unfortunately, clinical responses are unpredictable and often transient, which remains a clinical challenge in both species. Therefore, current efforts focus on the development of new improved treatment strategies. The field of comparative oncology may assist in these efforts and accelerate human and canine research regarding diagnosis, prognostication, and novel therapies. In this article, we review the current status of comparative oncology approaches and perspectives in the field of MC neoplasms.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/vco.12440DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6378619PMC
March 2019

CD44 is a RAS/STAT5-regulated invasion receptor that triggers disease expansion in advanced mastocytosis.

Blood 2018 11 17;132(18):1936-1950. Epub 2018 Jul 17.

Division of Hematology and Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria.

The Hermes receptor CD44 is a multifunctional adhesion molecule that plays an essential role in the homing and invasion of neoplastic stem cells in various myeloid malignancies. Although mast cells (MCs) reportedly express CD44, little is known about the regulation and function of this receptor in neoplastic cells in systemic mastocytosis (SM). We found that clonal CD34/CD38 stem cells, CD34/CD38 progenitor cells, and CD117/CD34 MCs invariably express CD44 in patients with indolent SM (ISM), SM with an associated hematologic neoplasm, aggressive SM, and MC leukemia (MCL). In addition, all human MCL-like cell lines examined (HMC-1, ROSA, and MCPV-1) displayed cytoplasmic and cell-surface CD44. We also found that expression of CD44 in neoplastic MCs depends on RAS-MEK and STAT5 signaling and increases with the aggressiveness of SM. Correspondingly, higher levels of soluble CD44 were measured in the sera of patients with advanced SM compared with ISM or cutaneous mastocytosis and were found to correlate with overall and progression-free survival. To investigate the functional role of CD44, a xenotransplantation model was employed using severe combined immunodeficient (SCID) mice, HMC-1.2 cells, and a short hairpin RNA (shRNA) against CD44. In this model, the shRNA-mediated knockdown of CD44 resulted in reduced MC expansion and tumor formation and prolonged survival in SCID mice compared with HMC-1.2 cells transduced with control shRNA. Together, our data show that CD44 is a RAS-MEK/STAT5-driven MC invasion receptor that correlates with the aggressiveness of SM. Whether CD44 can serve as therapeutic target in advanced SM remains to be determined in forthcoming studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood-2018-02-833582DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6382065PMC
November 2018

Ludwig Boltzmann Cluster Oncology (LBC ONC): first 10 years and future perspectives.

Wien Klin Wochenschr 2018 Sep 13;130(17-18):517-529. Epub 2018 Jul 13.

Ludwig Boltzmann Cluster Oncology, Vienna, Austria.

In 2008 the Ludwig Boltzmann Cluster Oncology (LBC ONC) was established on the basis of two previous Ludwig Boltzmann Institutes working in the field of hematology and cancer research. The general aim of the LBC ONC is to improve treatment of hematopoietic neoplasms by eradicating cancer-initiating and disease-propagating cells, also known as leukemic stem cells (LSC) in the context of leukemia. In a first phase, the LBC ONC characterized the phenotype and molecular aberration profiles of LSC in various malignancies. The LSC phenotypes were established in acute and chronic myeloid leukemia, in acute lymphoblastic leukemia and in chronic lymphocytic leukemia. In addition, the concept of preleukemic (premalignant) neoplastic stem cells (pre-L-NSC) was coined by the LBC ONC and was tested in myelodysplastic syndromes and myeloproliferative neoplasms. Phenotypic characterization of LSC provided a solid basis for their purification and for the characterization of specific target expression profiles. In a second phase, molecular markers and targets were validated. This second phase is ongoing and should result in the development of new diagnostics parameters and novel, more effective, LSC-eradicating, treatment strategies; however, many issues still remain to be solved, such as sub-clonal evolution, LSC niche interactions, immunologic control of LSC, and LSC resistance. In the forthcoming years, the LBC ONC will concentrate on developing LSC-eradicating strategies, with special focus on LSC resistance, precision medicine and translation of LSC-eradicating concepts into clinical application.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00508-018-1355-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6132878PMC
September 2018

Phenotyping and Target Expression Profiling of CD34/CD38 and CD34/CD38 Stem- and Progenitor cells in Acute Lymphoblastic Leukemia.

Neoplasia 2018 06 15;20(6):632-642. Epub 2018 May 15.

Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria. Electronic address:

Leukemic stem cells (LSCs) are an emerging target of curative anti-leukemia therapy. In acute lymphoblastic leukemia (ALL), LSCs frequently express CD34 and often lack CD38. However, little is known about markers and targets expressed in ALL LSCs. We have examined marker- and target expression profiles in CD34/CD38 LSCs in patients with Ph ALL (n = 22) and Ph ALL (n = 27) by multi-color flow cytometry and qPCR. ALL LSCs expressed CD19 (B4), CD44 (Pgp-1), CD123 (IL-3RA), and CD184 (CXCR4) in all patients tested. Moreover, in various subgroups of patients, LSCs also displayed CD20 (MS4A1) (10/41 = 24%), CD22 (12/20 = 60%), CD33 (Siglec-3) (20/48 = 42%), CD52 (CAMPATH-1) (17/40 = 43%), IL-1RAP (13/29 = 45%), and/or CD135 (FLT3) (4/20 = 20%). CD25 (IL-2RA) and CD26 (DPPIV) were expressed on LSCs in Ph ALL exhibiting BCR/ABL1, whereas in Ph ALL with BCR/ABL1, LSCs variably expressed CD25 but did not express CD26. In Ph ALL, CD34/CD38 LSCs expressed IL-1RAP in 6/18 patients (33%), but did not express CD25 or CD26. Normal stem cells stained negative for CD25, CD26 and IL-1RAP, and expressed only low amounts of CD52. In xenotransplantation experiments, CD34/CD38 and CD34/CD38 cells engrafted NSG mice after 12-20 weeks, and targeting with antibodies against CD33 and CD52 resulted in reduced engraftment. Together, LSCs in Ph and Ph ALL display unique marker- and target expression profiles. In Ph ALL with BCR/ABL1, the LSC-phenotype closely resembles the marker-profile of CD34/CD38 LSCs in chronic myeloid leukemia, confirming the close biologic relationship of these neoplasms. Targeting of LSCs with specific antibodies or related immunotherapies may facilitate LSC eradication in ALL.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neo.2018.04.004DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5994777PMC
June 2018

The KIT and PDGFRA switch-control inhibitor DCC-2618 blocks growth and survival of multiple neoplastic cell types in advanced mastocytosis.

Haematologica 2018 05 8;103(5):799-809. Epub 2018 Feb 8.

Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Austria

Systemic mastocytosis is a complex disease defined by abnormal growth and accumulation of neoplastic mast cells in various organs. Most patients exhibit a D816V-mutated variant of , which confers resistance against imatinib. Clinical problems in systemic mastocytosis arise from mediator-related symptoms and/or organ destruction caused by malignant expansion of neoplastic mast cells and/or other myeloid cells in various organ systems. DCC-2618 is a spectrum-selective pan KIT and PDGFRA inhibitor which blocks KIT D816V and multiple other kinase targets relevant to systemic mastocytosis. We found that DCC-2618 inhibits the proliferation and survival of various human mast cell lines (HMC-1, ROSA, MCPV-1) as well as primary neoplastic mast cells obtained from patients with advanced systemic mastocytosis (IC <1 μM). Moreover, DCC-2618 decreased growth and survival of primary neoplastic eosinophils obtained from patients with systemic mastocytosis or eosinophilic leukemia, leukemic monocytes obtained from patients with chronic myelomonocytic leukemia with or without concomitant systemic mastocytosis, and blast cells obtained from patients with acute myeloid leukemia. Furthermore, DCC-2618 was found to suppress the proliferation of endothelial cells, suggesting additional drug effects on systemic mastocytosis-related angiogenesis. Finally, DCC-2618 was found to downregulate IgE-mediated histamine release from basophils and tryptase release from mast cells. Together, DCC-2618 inhibits growth, survival and activation of multiple cell types relevant to advanced systemic mastocytosis. Whether DCC-2618 is effective in patients with advanced systemic mastocytosis is currently under investigation in clinical trials.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3324/haematol.2017.179895DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5927976PMC
May 2018

Variability of PD-L1 expression in mastocytosis.

Blood Adv 2018 02;2(3):189-199

Department of Pathology, University of New Mexico, Albuquerque, NM.

Mastocytosis is a rare disease with heterogeneous clinical manifestations and few effective therapies. Programmed death-1 (PD-1) and its ligands (PD-L1 and PD-L2) protect tissues from immune-mediated damage and permit tumors to evade immune destruction. Therapeutic antibodies against PD-1 and PD-L1 are effective in the treatment of a variety of neoplasms. In the present study, we sought to systematically analyze expression of PD-1 and PD-L1 in a large number of patients with mastocytosis using immunohistochemistry and multiplex fluorescence staining. PD-L1 showed membrane staining of neoplastic mast cells (MCs) in 77% of systemic mastocytosis (SM) cases including 3 of 3 patients with MC leukemia, 2 of 2 with aggressive SM, 1 of 2 with smoldering SM, 3 of 4 with indolent SM, and 9 of 12 with SM with an associated hematologic neoplasm (SM component only). Ninety-two percent (23 of 25) of cutaneous mastocytosis (CM) cases and 1 of 2 with myelomastocytic leukemia expressed PD-L1, with no expression found in 15 healthy/reactive marrows, 18 myelodysplastic syndromes (MDSs), 16 myeloproliferative neoplasms (MPNs), 5 MDS/MPNs, and 3 monoclonal MC activation syndromes. Variable PD-L1 expression was observed between and within samples, with PD-L1 staining of MCs ranging from 10% to 100% (mean, 50%). PD-1 dimly stained 4 of 27 CM cases (15%), with no expression in SM or other neoplasms tested; PD-1 staining of MCs ranged from 20% to 50% (mean, 27%). These results provide support for the expression of PD-L1 in SM and CM, and PD-1 expression in CM. These data support the exploration of agents with anti-PD-L1 activity in patients with advanced mastocytosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1182/bloodadvances.2017011551DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5812326PMC
February 2018

Evaluation of cooperative antileukemic effects of nilotinib and vildagliptin in Ph chronic myeloid leukemia.

Exp Hematol 2018 01 12;57:50-59.e6. Epub 2017 Oct 12.

Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria; Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, Vienna, Austria.

Chronic myeloid leukemia (CML) is a stem cell (SC) neoplasm characterized by the BCR/ABL1 oncogene. Although the disease can be kept under control using BCR/ABL1 tyrosine kinase inhibitors (TKIs) in most cases, some patients relapse or have resistant disease, so there is a need to identify new therapeutic targets in this malignancy. Recent data suggest that leukemic SCs (LSCs) in CML display the stem-cell (SC)-mobilizing cell surface enzyme dipeptidyl-peptidase IV (DPPIV = CD26) in an aberrant manner. In the present study, we analyzed the effects of the DPPIV blocker vildagliptin as single agent or in combination with the BCR/ABL1 TKI imatinib or nilotinib on growth and survival of CML LSCs in vitro and on LSC engraftment in an in vivo xenotransplantation nonobese diabetic SCID-IL-2Rγ (NSG) mouse model. We found that nilotinib induces apoptosis in CML LSCs and inhibits their engraftment in NSG mice. In contrast, no substantial effects were seen with imatinib or vildagliptin. Nevertheless, vildagliptin was found to reduce the "mobilization" of CML LSCs from a stroma cell layer consisting of mouse fibroblasts in an in vitro co-culture model, suggesting reduced disease expansion. However, although vildagliptin and nilotinib produced cooperative effects in individual experiments, overall, no significant effects of coadministered vildagliptin over nilotinib or imatinib treatment alone were seen on the engraftment of CML cells in NSG mice. Gliptins may be interesting drugs in the context of CML and nilotinib therapy, but our preclinical studies did not reveal a major cooperative effect of the drug-combination vildagliptin + nilotinib on engraftment of CML cells in NSG mice.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exphem.2017.09.012DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7115814PMC
January 2018

The pan-BCL-2-blocker obatoclax (GX15-070) and the PI3-kinase/mTOR-inhibitor BEZ235 produce cooperative growth-inhibitory effects in ALL cells.

Oncotarget 2017 Sep 28;8(40):67709-67722. Epub 2017 Jun 28.

Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Vienna, Austria.

Acute lymphoblastic leukemia (ALL) is characterized by leukemic expansion of lymphoid blasts in hematopoietic tissues. Despite improved therapy only a subset of patients can be cured. Therefore, current research is focusing on new drug-targets. Members of the BCL-2 family and components of the PI3-kinase/mTOR pathway are critically involved in the regulation of growth and survival of ALL cells. We examined the effects of the pan-BCL-2 blocker obatoclax and the PI3-kinase/mTOR-inhibitor BEZ235 on growth and survival of ALL cells. In H-thymidine uptake experiments, both drugs suppressed the proliferation of leukemic cells in all patients with Philadelphia chromosome-positive (Ph) ALL and Ph ALL (obatoclax IC: 0.01-5 μM; BEZ235, IC: 0.01-1 μM). Both drugs were also found to produce growth-inhibitory effects in all Ph and all Ph cell lines tested. Moreover, obatoclax and BEZ235 induced apoptosis in ALL cells. In drug-combination experiments, obatoclax and BEZ235 exerted synergistic growth-inhibitory effects on ALL cells. Finally, we confirmed that ALL cells, including CD34/CD38 stem cells and all cell lines express transcripts for PI3-kinase, mTOR, BCL-2, MCL-1, and BCL-xL. Taken together, this data shows that combined targeting of the PI3-kinase/mTOR-pathway and BCL-2 family-members is a potent approach to counteract growth and survival of ALL cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.18632/oncotarget.18810DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5620205PMC
September 2017

Combined targeting of STAT3 and STAT5: a novel approach to overcome drug resistance in chronic myeloid leukemia.

Haematologica 2017 09 8;102(9):1519-1529. Epub 2017 Jun 8.

Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Austria.

In chronic myeloid leukemia, resistance against BCR-ABL1 tyrosine kinase inhibitors can develop because of mutations, activation of additional pro-oncogenic pathways, and stem cell resistance. Drug combinations covering a broad range of targets may overcome resistance. CDDO-Me (bardoxolone methyl) is a drug that inhibits the survival of leukemic cells by targeting different pro-survival molecules, including STAT3. We found that CDDO-Me inhibits proliferation and survival of tyrosine kinase inhibitor-resistant cell lines and primary leukemic cells, including cells harboring or T315I compound mutations. Furthermore, CDDO-Me was found to block growth and survival of CD34/CD38 leukemic stem cells (LSC). Moreover, CDDO-Me was found to produce synergistic growth-inhibitory effects when combined with BCR-ABL1 tyrosine kinase inhibitors. These drug-combinations were found to block multiple signaling cascades and molecules, including STAT3 and STAT5. Furthermore, combined targeting of STAT3 and STAT5 by shRNA and STAT5-targeting drugs also resulted in synergistic growth-inhibition, pointing to a new efficient concept of combinatorial STAT3 and STAT5 inhibition. However, CDDO-Me was also found to increase the expression of heme-oxygenase-1, a heat-shock-protein that triggers drug resistance and cell survival. We therefore combined CDDO-Me with the heme-oxygenase-1 inhibitor SMA-ZnPP, which also resulted in synergistic growth-inhibitory effects. Moreover, SMA-ZnPP was found to sensitize cells against the combination 'CDDO-Me+ tyrosine kinase inhibitor'. Together, combined targeting of STAT3, STAT5, and heme-oxygenase-1 overcomes resistance in cells, including stem cells and highly resistant sub-clones expressing BCR-ABL1 or T315I-compound mutations. Whether such drug-combinations are effective in tyrosine kinase inhibitor-resistant patients with chronic myeloid leukemia remains to be elucidated.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3324/haematol.2016.163436DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5685220PMC
September 2017

Expression of CD25 on leukemic stem cells in BCR-ABL1 CML: Potential diagnostic value and functional implications.

Exp Hematol 2017 07 27;51:17-24. Epub 2017 Apr 27.

Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria. Electronic address:

Chronic myeloid leukemia (CML) is a stem cell-derived leukemia in which neoplastic cells exhibit the Philadelphia chromosome and the related oncoprotein BCR-ABL1. The disease is characterized by an accumulation of myeloid precursor cells in the peripheral blood and bone marrow (BM). A small fraction of neoplastic cells in the CML clone supposedly exhibits self-renewal and thus long-term disease-propagating ability. However, so far, little is known about the phenotype, function, and target expression profiles of these leukemic stem cells (LSCs). Recent data suggest that CML LSCs aberrantly express the interleukin-2 receptor alpha chain CD25. Whereas normal CD34/CD38 BM stem cells display only low amounts of CD25 or lack CD25 altogether, CD34/CD38 LSCs express CD25 strongly in more than 90% of all patients with untreated CML. As a result, CD25 can be used to identify and quantify CML LSCs. In addition, it has been shown that CD25 serves as a negative growth regulator of CML LSCs. Here, we review the value of CD25 as a novel marker and potential drug target in CML LSCs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exphem.2017.04.003DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6044418PMC
July 2017

CCL2 is a KIT D816V-dependent modulator of the bone marrow microenvironment in systemic mastocytosis.

Blood 2017 01 16;129(3):371-382. Epub 2016 Nov 16.

Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.

Systemic mastocytosis (SM) is characterized by abnormal accumulation of neoplastic mast cells harboring the activating KIT mutation D816V in the bone marrow and other internal organs. As found in other myeloproliferative neoplasms, increased production of profibrogenic and angiogenic cytokines and related alterations of the bone marrow microenvironment are commonly found in SM. However, little is known about mechanisms and effector molecules triggering fibrosis and angiogenesis in SM. Here we show that KIT D816V promotes expression of the proangiogenic cytokine CCL2 in neoplastic mast cells. Correspondingly, the KIT-targeting drug midostaurin and RNA interference-mediated knockdown of KIT reduced expression of CCL2. We also found that nuclear factor κB contributes to KIT-dependent upregulation of CCL2 in mast cells. In addition, CCL2 secreted by KIT D816V mast cells was found to promote the migration of human endothelial cells in vitro. Furthermore, knockdown of CCL2 in neoplastic mast cells resulted in reduced microvessel density and reduced tumor growth in vivo compared with CCL2-expressing cells. Finally, we measured CCL2 serum concentrations in patients with SM and found that CCL2 levels were significantly increased in mastocytosis patients compared with controls. CCL2 serum levels were higher in patients with advanced SM and were found to correlate with poor survival. In summary, we have identified CCL2 as a novel KIT D816V-dependent key regulator of vascular cell migration and angiogenesis in SM. CCL2 expression correlates with disease severity and prognosis. Whether CCL2 may serve as a therapeutic target in advanced SM remains to be determined in forthcoming studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood-2016-09-739003DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7115851PMC
January 2017

Human skin dendritic cell fate is differentially regulated by the monocyte identity factor Kruppel-like factor 4 during steady state and inflammation.

J Allergy Clin Immunol 2017 Jun 11;139(6):1873-1884.e10. Epub 2016 Oct 11.

Institute of Pathophysiology and Immunology, Medical University of Graz, Graz, Austria; Institute of Immunology, Medical University of Vienna, Vienna, Austria. Electronic address:

Background: Langerhans cell (LC) networks play key roles in immunity and tolerance at body surfaces. LCs are established prenatally and can be replenished from blood monocytes. Unlike skin-resident dermal DCs (dDCs)/interstitial-type DCs and inflammatory dendritic epidermal cells appearing in dermatitis/eczema lesions, LCs lack key monocyte-affiliated markers. Inversely, LCs express various epithelial genes critical for their long-term peripheral tissue residency.

Objective: Dendritic cells (DCs) are functionally involved in inflammatory diseases; however, the mechanisms remained poorly understood.

Methods: In vitro differentiation models of human DCs, gene profiling, gene transduction, and immunohistology were used to identify molecules involved in DC subset specification.

Results: Here we identified the monocyte/macrophage lineage identity transcription factor Kruppel-like factor 4 (KLF4) to be inhibited during LC differentiation from human blood monocytes. Conversely, KLF4 is maintained or induced during dermal DC and monocyte-derived dendritic cell/inflammatory dendritic epidermal cell differentiation. We showed that in monocytic cells KLF4 has to be repressed to allow their differentiation into LCs. Moreover, respective KLF4 levels in DC subsets positively correlate with proinflammatory characteristics. We identified epithelial Notch signaling to repress KLF4 in monocytes undergoing LC commitment. Loss of KLF4 in monocytes transcriptionally derepresses Runt-related transcription factor 3 in response to TGF-β1, thereby allowing LC differentiation marked by a low cytokine expression profile.

Conclusion: Monocyte differentiation into LCs depends on activation of Notch signaling and the concomitant loss of KLF4.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jaci.2016.09.018DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5538449PMC
June 2017

Quantitative assessment of the CD26+ leukemic stem cell compartment in chronic myeloid leukemia: patient-subgroups, prognostic impact, and technical aspects.

Oncotarget 2016 May;7(22):33016-24

Department of Internal Medicine, Hematology and Oncology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.

Little is known about the function and phenotype of leukemic stem cells (LSCs) in chronic myeloid leukemia (CML) or about specific markers that discriminate LSCs from normal hematopoietic stem cells (HSCs). CD26 has recently been described as a specific marker of CML LSCs. In the current study, we investigated this marker in a cohort of 31 unselected CML patients. BCR/ABL1 positivity was analyzed in highly enriched stem cell fractions using fluorescence in situ hybridization (FISH) and reverse transcription PCR (RT-PCR). The proportion of CD26+ LSCs and CD26- HSCs varied considerably among the patients analyzed, and the percentage of CD26+ cells correlated with leukocyte count. The CD26 expression robustly discriminated LSCs from HSCs. This required a strict gating of the stem cell compartment. Thus, in patients with very low LSC or HSC numbers, only the highly sensitive RT-PCR method discriminated between clonal and non-clonal cells, while a robust FISH analysis required larger numbers of cells in both compartments. Finally, our data show that the numbers of CD26+ CML LSCs correlate with responses to treatment with BCR-ABL1 inhibitors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.18632/oncotarget.9108DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5078071PMC
May 2016

Identification of CD25 as STAT5-Dependent Growth Regulator of Leukemic Stem Cells in Ph+ CML.

Clin Cancer Res 2016 Apr 25;22(8):2051-61. Epub 2015 Nov 25.

Division of Hematology and Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria. Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria.

Purpose: In chronic myelogenous leukemia (CML), leukemic stem cells (LSC) represent a critical target of therapy. However, little is known about markers and targets expressed by LSCs. The aim of this project was to identify novel relevant markers of CML LSCs.

Experimental Design: CML LSCs were examined by flow cytometry, qPCR, and various bioassays. In addition, we examined the multipotent CD25(+)CML cell line KU812.

Results: In contrast to normal hematopoietic stem cells, CD34(+)/CD38(-)CML LSCs expressed the IL-2 receptor alpha chain, IL-2RA (CD25). STAT5 was found to induce expression of CD25 in Lin(-)/Sca-1(+)/Kit(+)stem cells in C57Bl/6 mice. Correspondingly, shRNA-induced STAT5 depletion resulted in decreased CD25 expression in KU812 cells. Moreover, the BCR/ABL1 inhibitors nilotinib and ponatinib were found to decrease STAT5 activity and CD25 expression in KU812 cells and primary CML LSCs. A CD25-targeting shRNA was found to augment proliferation of KU812 cellsin vitroand their engraftmentin vivoin NOD/SCID-IL-2Rγ(-/-)mice. In drug-screening experiments, the PI3K/mTOR blocker BEZ235 promoted the expression of STAT5 and CD25 in CML cells. Finally, we found that BEZ235 produces synergistic antineoplastic effects on CML cells when applied in combination with nilotinib or ponatinib.

Conclusions: CD25 is a novel STAT5-dependent marker of CML LSCs and may be useful for LSC detection and LSC isolation in clinical practice and basic science. Moreover, CD25 serves as a growth regulator of CML LSCs, which may have biologic and clinical implications and may pave the way for the development of new more effective LSC-eradicating treatment strategies in CML.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/1078-0432.CCR-15-0767DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4817228PMC
April 2016

Identification of the Ki-1 antigen (CD30) as a novel therapeutic target in systemic mastocytosis.

Blood 2015 Dec 20;126(26):2832-41. Epub 2015 Oct 20.

Department of Internal Medicine I, Division of Hematology and Hemostaseology and Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria;

The Ki-1 antigen (CD30) is an established therapeutic target in patients with Hodgkin lymphoma and anaplastic large-cell lymphoma. We have recently shown that CD30 is expressed abundantly in the cytoplasm of neoplastic mast cells (MCs) in patients with advanced systemic mastocytosis (SM). In the current study, we asked whether CD30 is expressed on the surface of neoplastic MCs in advanced SM, and whether this surface structure may serve as therapeutic target in SM. As assessed by flow cytometry, CD30 was found to be expressed on the surface of neoplastic MCs in 3 of 25 patients (12%) with indolent SM, 4 of 7 patients (57%) with aggressive SM, and 4 of 7 patients (57%) with MC leukemia. The immature RAS-transformed human MC line MCPV-1.1 also expressed cell surface CD30, whereas the KIT-transformed MC line HMC-1.2 expressed no detectable CD30. The CD30-targeting antibody-conjugate brentuximab-vedotin inhibited proliferation in neoplastic MCs, with lower IC50 values obtained in CD30(+) MCPV-1.1 cells (10 µg/mL) compared with CD30(-) HMC-1.2 cells (>50 µg/mL). In addition, brentuximab-vedotin suppressed the engraftment of MCPV-1.1 cells in NSG mice. Moreover, brentuximab-vedotin produced apoptosis in all CD30(+) MC lines tested as well as in primary neoplastic MCs in patients with CD30(+) SM, but did not induce apoptosis in neoplastic MCs in patients with CD30(-) SM. Furthermore, brentuximab-vedotin was found to downregulate anti-IgE-induced histamine release in CD30(+) MCs. Finally, brentuximab-vedotin and the KIT D816V-targeting drug PKC412 produced synergistic growth-inhibitory effects in MCPV-1.1 cells. Together, CD30 is a promising new drug target for patients with CD30(+) advanced SM.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood-2015-03-637728DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4692143PMC
December 2015

Prominin-1 (CD133, AC133) and dipeptidyl-peptidase IV (CD26) are indicators of infinitive growth in colon cancer cells.

Am J Cancer Res 2015 15;5(2):560-74. Epub 2015 Jan 15.

Ludwig Boltzmann Cluster Oncology, Medical University of Vienna Waehringer Guertel 18-20, A-1090 Vienna, Austria ; Department of Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna Waehringer Guertel 18-20, A-1090 Vienna, Austria.

Advanced colorectal cancer is characterized by uncontrolled growth and resistance against anti-cancer agents, including ErbB inhibitors. Recent data suggest that cancer stem cells (CSC) are particularly resistant. These cells may reside within a CD133+ fraction of the malignant cells. Using HCT116 cells we explored the role of CD133 and other CSC markers in drug resistance in colon cancer cells. CD133+ cells outnumbered CD133- cells over time in long-term culture. Both populations displayed the KRAS mutation 38G > A and an almost identical target profile, including EGFR/ErbB1, ErbB2, and ErbB4. Microarray analyses and flow cytometry identified CD26 as additional CSC marker co-expressed on CD133+ cells. However, knock-down of CD133 or CD26 did not affect short-term growth of HCT116 cells, and both cell-populations were equally resistant to various targeted drugs except irreversible ErbB inhibitors, which blocked growth and ERK1/2 phosphorylation in CD133- cells more efficiently than in CD133+ cells. Moreover, the MEK inhibitor AS703026 was found to overcome resistance against ErbB blockers in CD133+ cells. Together, CD133 and CD26 are markers of long-term growth and resistance to ErbB blockers in HCT116 cells, which may be mediated by constitutive ERK activity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4396035PMC
May 2015

DPPIV (CD26) as a novel stem cell marker in Ph+ chronic myeloid leukaemia.

Eur J Clin Invest 2014 Dec;44(12):1239-45

Division of Haematology & Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria.

The concept of leukaemic stem cells (LSCs) has been developed to explain the complex cellular hierarchy and biology of leukaemias and to screen for pivotal targets that can be employed to improve drug therapies through LSC eradication in these patients. Some of the newly discovered LSC markers seem to be expressed in a disease-specific manner and may thus serve as major research tools and diagnostic parameters. A useful LSC marker in chronic myeloid leukaemia (CML) appears to be CD26, also known as dipeptidylpeptidase IV. Expression of CD26 is largely restricted to CD34(+) /CD38(-) LSCs in BCR/ABL1(+) CML, but is not found on LSCs in other myeloid or lymphoid neoplasms, with the exception of lymphoid blast crisis of CML, BCR/ABL1p210 + acute lymphoblastic leukaemia, and a very few cases of acute myeloid leukaemia. Moreover, CD26 usually is not expressed on normal bone marrow (BM) stem cells. Functionally, CD26 is a cytokine-targeting surface enzyme that may facilitate the mobilization of LSCs from the BM niche. In this article, we review our current knowledge about the biology and function of CD26 on CML LSCs and discuss the diagnostic potential of this new LSC marker in clinical haematology.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/eci.12368DOI Listing
December 2014

Chronic mast cell leukemia (MCL) with KIT S476I: a rare entity defined by leukemic expansion of mature mast cells and absence of organ damage.

Ann Hematol 2015 Feb 11;94(2):223-31. Epub 2014 Sep 11.

Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria,

Mast cell leukemia (MCL) is a rare, life-threatening malignancy defined by a substantial increase in neoplastic mast cells (MCs) in bone marrow (BM) smears, drug-resistance, and a poor prognosis. In most patients, the survival time is less than 1 year. However, exceptional cases may present with a less malignant course. We report on a 49-year-old female patient with MCL diagnosed in 2013. In February 2013, first symptoms, including flushing, headache, and diarrhea, were recorded. In addition, mild anemia was detected. The disease was characterized by a massive increase in well-granulated, mature, and often spindle-shaped MCs (80 %) in BM smears. The serum tryptase level amounted to 332 ng/mL. Like in most other MCL patients, no skin lesions were detected. However, unlike in other patients, tryptase levels remained stable, and no other signs or symptoms of MCL-induced organ damage were found. Sequencing studies revealed an isolated S476I point mutation in KIT but no mutation in codon 816. The patient received histamine receptor blockers but refused cytoreductive therapy. After 9 months, still no progression or organ damage was detected. However, progression with transformation to acute MCL occurred after 12 months. We propose that the chronic type of MCL with stable conditions, absence of organ damage, and a mature MC morphology is recognized as a distinct entity that should be distinguished from the acute variant of MCL.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00277-014-2207-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4896380PMC
February 2015
-->