Publications by authors named "Greg Poffenberger"

32 Publications

Integrated Analysis of the Pancreas and Islets Reveals Unexpected Findings in Human Male With Type 1 Diabetes.

J Endocr Soc 2021 Dec 29;5(12):bvab162. Epub 2021 Oct 29.

Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.

Clinical and pathologic heterogeneity in type 1 diabetes is increasingly being recognized. Findings in the islets and pancreas of a 22-year-old male with 8 years of type 1 diabetes were discordant with expected results and clinical history (islet autoantibodies negative, hemoglobin A1c 11.9%) and led to comprehensive investigation to define the functional, molecular, genetic, and architectural features of the islets and pancreas to understand the cause of the donor's diabetes. Examination of the donor's pancreatic tissue found substantial but reduced β-cell mass with some islets devoid of β cells (29.3% of 311 islets) while other islets had many β cells. Surprisingly, isolated islets from the donor pancreas had substantial insulin secretion, which is uncommon for type 1 diabetes of this duration. Targeted and whole-genome sequencing and analysis did not uncover monogenic causes of diabetes but did identify high-risk human leukocyte antigen haplotypes and a genetic risk score suggestive of type 1 diabetes. Further review of pancreatic tissue found islet inflammation and some previously described α-cell molecular features seen in type 1 diabetes. By integrating analysis of isolated islets, histological evaluation of the pancreas, and genetic information, we concluded that the donor's clinical insulin deficiency was most likely the result autoimmune-mediated β-cell loss but that the constellation of findings was not typical for type 1 diabetes. This report highlights the pathologic and functional heterogeneity that can be present in type 1 diabetes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1210/jendso/bvab162DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8633619PMC
December 2021

Combinatorial transcription factor profiles predict mature and functional human islet α and β cells.

JCI Insight 2021 09 22;6(18). Epub 2021 Sep 22.

Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.

Islet-enriched transcription factors (TFs) exert broad control over cellular processes in pancreatic α and β cells, and changes in their expression are associated with developmental state and diabetes. However, the implications of heterogeneity in TF expression across islet cell populations are not well understood. To define this TF heterogeneity and its consequences for cellular function, we profiled more than 40,000 cells from normal human islets by single-cell RNA-Seq and stratified α and β cells based on combinatorial TF expression. Subpopulations of islet cells coexpressing ARX/MAFB (α cells) and MAFA/MAFB (β cells) exhibited greater expression of key genes related to glucose sensing and hormone secretion relative to subpopulations expressing only one or neither TF. Moreover, all subpopulations were identified in native pancreatic tissue from multiple donors. By Patch-Seq, MAFA/MAFB-coexpressing β cells showed enhanced electrophysiological activity. Thus, these results indicate that combinatorial TF expression in islet α and β cells predicts highly functional, mature subpopulations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1172/jci.insight.151621DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8492318PMC
September 2021

Coordinated interactions between endothelial cells and macrophages in the islet microenvironment promote β cell regeneration.

NPJ Regen Med 2021 Apr 6;6(1):22. Epub 2021 Apr 6.

Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA.

Endogenous β cell regeneration could alleviate diabetes, but proliferative stimuli within the islet microenvironment are incompletely understood. We previously found that β cell recovery following hypervascularization-induced β cell loss involves interactions with endothelial cells (ECs) and macrophages (MΦs). Here we show that proliferative ECs modulate MΦ infiltration and phenotype during β cell loss, and recruited MΦs are essential for β cell recovery. Furthermore, VEGFR2 inactivation in quiescent ECs accelerates islet vascular regression during β cell recovery and leads to increased β cell proliferation without changes in MΦ phenotype or number. Transcriptome analysis of β cells, ECs, and MΦs reveals that β cell proliferation coincides with elevated expression of extracellular matrix remodeling molecules and growth factors likely driving activation of proliferative signaling pathways in β cells. Collectively, these findings suggest a new β cell regeneration paradigm whereby coordinated interactions between intra-islet MΦs, ECs, and extracellular matrix mediate β cell self-renewal.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41536-021-00129-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8024255PMC
April 2021

Glucagon blockade restores functional β-cell mass in type 1 diabetic mice and enhances function of human islets.

Proc Natl Acad Sci U S A 2021 03;118(9)

Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549;

We evaluated the potential for a monoclonal antibody antagonist of the glucagon receptor (Ab-4) to maintain glucose homeostasis in type 1 diabetic rodents. We noted durable and sustained improvements in glycemia which persist long after treatment withdrawal. Ab-4 promoted β-cell survival and enhanced the recovery of insulin islet mass with concomitant increases in circulating insulin and C peptide. In PANIC-ATTAC mice, an inducible model of β-cell apoptosis which allows for robust assessment of β-cell regeneration following caspase-8-induced diabetes, Ab-4 drove a 6.7-fold increase in β-cell mass. Lineage tracing suggests that this restoration of functional insulin-producing cells was at least partially driven by α-cell-to-β-cell conversion. Following hyperglycemic onset in nonobese diabetic (NOD) mice, Ab-4 treatment promoted improvements in C-peptide levels and insulin islet mass was dramatically increased. Lastly, diabetic mice receiving human islet xenografts showed stable improvements in glycemic control and increased human insulin secretion.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.2022142118DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7936318PMC
March 2021

Dapagliflozin Does Not Directly Affect Human α or β Cells.

Endocrinology 2020 08;161(8)

Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.

Selective inhibitors of sodium glucose cotransporter-2 (SGLT2) are widely used for the treatment of type 2 diabetes and act primarily to lower blood glucose by preventing glucose reabsorption in the kidney. However, it is controversial whether these agents also act on the pancreatic islet, specifically the α cell, to increase glucagon secretion. To determine the effects of SGLT2 on human islets, we analyzed SGLT2 expression and hormone secretion by human islets treated with the SGLT2 inhibitor dapagliflozin (DAPA) in vitro and in vivo. Compared to the human kidney, SLC5A2 transcript expression was 1600-fold lower in human islets and SGLT2 protein was not detected. In vitro, DAPA treatment had no effect on glucagon or insulin secretion by human islets at either high or low glucose concentrations. In mice bearing transplanted human islets, 1 and 4 weeks of DAPA treatment did not alter fasting blood glucose, human insulin, and total glucagon levels. Upon glucose stimulation, DAPA treatment led to lower blood glucose levels and proportionally lower human insulin levels, irrespective of treatment duration. In contrast, after glucose stimulation, total glucagon was increased after 1 week of DAPA treatment but normalized after 4 weeks of treatment. Furthermore, the human islet grafts showed no effects of DAPA treatment on hormone content, endocrine cell proliferation or apoptosis, or amyloid deposition. These data indicate that DAPA does not directly affect the human pancreatic islet, but rather suggest an indirect effect where lower blood glucose leads to reduced insulin secretion and a transient increase in glucagon secretion.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1210/endocr/bqaa080DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7375801PMC
August 2020

Decreased pancreatic acinar cell number in type 1 diabetes.

Diabetologia 2020 07 9;63(7):1418-1423. Epub 2020 May 9.

Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, 7465 Medical Research Bldg IV, 2215 Garland Avenue, Nashville, TN, 37232-0475, USA.

Aims/hypothesis: Individuals with longstanding and recent-onset type 1 diabetes have a smaller pancreas. Since beta cells represent a very small portion of the pancreas, the loss of pancreas volume in diabetes is primarily due to the loss of pancreatic exocrine mass. However, the structural changes in the exocrine pancreas in diabetes are not well understood.

Methods: To characterise the pancreatic endocrine and exocrine compartments in diabetes, we studied pancreases from adult donors with type 1 diabetes compared with similarly aged donors without diabetes. Islet cell mass, islet morphometry, exocrine mass, acinar cell size and number and pancreas fibrosis were assessed by immunohistochemical staining. To better understand possible mechanisms of altered pancreas size, we measured pancreas size in three mouse models of insulin deficiency.

Results: Pancreases from donors with type 1 diabetes were approximately 45% smaller than those from donors without diabetes (47.4 ± 2.6 vs 85.7 ± 3.7 g), independent of diabetes duration or age of onset. Diabetic donor pancreases had decreased beta cell mass (0.061 ± 0.025 vs 0.94 ± 0.21 g) and reduced total exocrine mass (42.0 ± 4.9 vs 96.1 ± 6.5 g). Diabetic acinar cells were similar in size but fewer in number compared with those in pancreases from non-diabetic donors (63.7 ± 8.1 × 10 vs 121.6 ± 12.2 × 10 cells/pancreas), likely accounting for the difference in pancreas size. Within the type 1 diabetes exocrine tissue, there was a greater degree of fibrosis. The pancreases in three mouse models of insulin deficiency were similar in size to those in control mice.

Conclusions/interpretation: Pancreases from donors with type 1 diabetes are smaller than normal donor pancreases because exocrine cells are fewer in number rather than smaller in size; these changes occur early in the disease process. Our mouse data suggest that decreased pancreas size in type 1 diabetes is not directly caused by insulin deficiency, but the precise mechanism responsible remains unclear.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00125-020-05155-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8403487PMC
July 2020

Pancreatic islet beta cell-specific deletion of G6pc2 reduces fasting blood glucose.

J Mol Endocrinol 2020 05;64(4):235-248

Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.

The G6PC1, G6PC2 and G6PC3 genes encode distinct glucose-6-phosphatase catalytic subunit (G6PC) isoforms. In mice, germline deletion of G6pc2 lowers fasting blood glucose (FBG) without affecting fasting plasma insulin (FPI) while, in isolated islets, glucose-6-phosphatase activity and glucose cycling are abolished and glucose-stimulated insulin secretion (GSIS) is enhanced at submaximal but not high glucose. These observations are all consistent with a model in which G6PC2 regulates the sensitivity of GSIS to glucose by opposing the action of glucokinase. G6PC2 is highly expressed in human and mouse islet beta cells however, various studies have shown trace G6PC2 expression in multiple tissues raising the possibility that G6PC2 also affects FBG through non-islet cell actions. Using real-time PCR we show here that expression of G6pc1 and/or G6pc3 are much greater than G6pc2 in peripheral tissues, whereas G6pc2 expression is much higher than G6pc3 in both pancreas and islets with G6pc1 expression not detected. In adult mice, beta cell-specific deletion of G6pc2 was sufficient to reduce FBG without changing FPI. In addition, electronic health record-derived phenotype analyses showed no association between G6PC2 expression and phenotypes clearly unrelated to islet function in humans. Finally, we show that germline G6pc2 deletion enhances glycolysis in mouse islets and that glucose cycling can also be detected in human islets. These observations are all consistent with a mechanism by which G6PC2 action in islets is sufficient to regulate the sensitivity of GSIS to glucose and hence influence FBG without affecting FPI.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1530/JME-20-0031DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7331801PMC
May 2020

Tacrolimus- and sirolimus-induced human β cell dysfunction is reversible and preventable.

JCI Insight 2020 01 16;5(1). Epub 2020 Jan 16.

Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, and.

Posttransplantation diabetes mellitus (PTDM) is a common and significant complication related to immunosuppressive agents required to prevent organ or cell transplant rejection. To elucidate the effects of 2 commonly used agents, the calcineurin inhibitor tacrolimus (TAC) and the mTOR inhibitor sirolimus (SIR), on islet function and test whether these effects could be reversed or prevented, we investigated human islets transplanted into immunodeficient mice treated with TAC or SIR at clinically relevant levels. Both TAC and SIR impaired insulin secretion in fasted and/or stimulated conditions. Treatment with TAC or SIR increased amyloid deposition and islet macrophages, disrupted insulin granule formation, and induced broad transcriptional dysregulation related to peptide processing, ion/calcium flux, and the extracellular matrix; however, it did not affect regulation of β cell mass. Interestingly, these β cell abnormalities reversed after withdrawal of drug treatment. Furthermore, cotreatment with a GLP-1 receptor agonist completely prevented TAC-induced β cell dysfunction and partially prevented SIR-induced β cell dysfunction. These results highlight the importance of both calcineurin and mTOR signaling in normal human β cell function in vivo and suggest that modulation of these pathways may prevent or ameliorate PTDM.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1172/jci.insight.130770DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7030815PMC
January 2020

Human islets expressing HNF1A variant have defective β cell transcriptional regulatory networks.

J Clin Invest 2019 01 3;129(1):246-251. Epub 2018 Dec 3.

Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA.

Using an integrated approach to characterize the pancreatic tissue and isolated islets from a 33-year-old with 17 years of type 1 diabetes (T1D), we found that donor islets contained β cells without insulitis and lacked glucose-stimulated insulin secretion despite a normal insulin response to cAMP-evoked stimulation. With these unexpected findings for T1D, we sequenced the donor DNA and found a pathogenic heterozygous variant in the gene encoding hepatocyte nuclear factor-1α (HNF1A). In one of the first studies of human pancreatic islets with a disease-causing HNF1A variant associated with the most common form of monogenic diabetes, we found that HNF1A dysfunction leads to insulin-insufficient diabetes reminiscent of T1D by impacting the regulatory processes critical for glucose-stimulated insulin secretion and suggest a rationale for a therapeutic alternative to current treatment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1172/JCI121994DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6307934PMC
January 2019

Ectonucleoside Triphosphate Diphosphohydrolase-3 Antibody Targets Adult Human Pancreatic β Cells for In Vitro and In Vivo Analysis.

Cell Metab 2019 03 15;29(3):745-754.e4. Epub 2018 Nov 15.

Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37240, USA; Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA; VA Tennessee Valley Healthcare, Nashville, TN 37212, USA. Electronic address:

Identification of cell-surface markers specific to human pancreatic β cells would allow in vivo analysis and imaging. Here we introduce a biomarker, ectonucleoside triphosphate diphosphohydrolase-3 (NTPDase3), that is expressed on the cell surface of essentially all adult human β cells, including those from individuals with type 1 or type 2 diabetes. NTPDase3 is expressed dynamically during postnatal human pancreas development, appearing first in acinar cells at birth, but several months later its expression declines in acinar cells while concurrently emerging in islet β cells. Given its specificity and membrane localization, we utilized an NTPDase3 antibody for purification of live human β cells as confirmed by transcriptional profiling, and, in addition, for in vivo imaging of transplanted human β cells. Thus, NTPDase3 is a cell-surface biomarker of adult human β cells, and the antibody directed to this protein should be a useful new reagent for β cell sorting, in vivo imaging, and targeting.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmet.2018.10.007DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6402969PMC
March 2019

Healthy Donor Polyclonal IgMs Diminish B-Lymphocyte Autoreactivity, Enhance Regulatory T-Cell Generation, and Reverse Type 1 Diabetes in NOD Mice.

Diabetes 2018 11 21;67(11):2349-2360. Epub 2018 Aug 21.

Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN

Autoimmune diseases such as type 1 diabetes (T1D) arise from unrestrained activation of effector lymphocytes that destroy target tissues. Many efforts have been made to eliminate these effector lymphocytes, but none has produced a long-term cure. An alternative to depletion therapy is to enhance endogenous immune regulation. Among these endogenous alternatives, naturally occurring Igs have been applied for inflammatory disorders but have lacked potency in antigen-specific autoimmunity. We hypothesized that naturally occurring polyclonal IgMs, which represent the majority of circulating, noninduced antibodies but are present only in low levels in therapeutic Ig preparations, possess the most potent capacity to restore immune homeostasis. Treatment of diabetes-prone NOD mice with purified IgM isolated from Swiss Webster (SW) mice (nIgM) reversed new-onset diabetes, eliminated autoreactive B lymphocytes, and enhanced regulatory T-cell (Treg) numbers both centrally and peripherally. Conversely, IgM from prediabetic NOD mice could not restore this endogenous regulation, which represents an unrecognized component of T1D pathogenesis. Of note, IgM derived from healthy human donors was similarly able to expand human CD4 Tregs in humanized mice and produced permanent diabetes protection in treated NOD mice. Overall, these studies demonstrate that a potent, endogenous regulatory mechanism, nIgM, is a promising option for reversing autoimmune T1D in humans.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2337/db18-0456DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6198348PMC
November 2018

β-Cell Replacement in Mice Using Human Type 1 Diabetes Nuclear Transfer Embryonic Stem Cells.

Diabetes 2018 01 20;67(1):26-35. Epub 2017 Sep 20.

Naomi Berrie Diabetes Center and Department of Pediatrics, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY

β-Cells derived from stem cells hold great promise for cell replacement therapy for diabetes. Here we examine the ability of nuclear transfer embryonic stem cells (NT-ESs) derived from a patient with type 1 diabetes to differentiate into β-cells and provide a source of autologous islets for cell replacement. NT-ESs differentiate in vitro with an average efficiency of 55% into C-peptide-positive cells, expressing markers of mature β-cells, including MAFA and NKX6.1. Upon transplantation in immunodeficient mice, grafted cells form vascularized islet-like structures containing MAFA/C-peptide-positive cells. These β-cells adapt insulin secretion to ambient metabolite status and show normal insulin processing. Importantly, NT-ES-β-cells maintain normal blood glucose levels after ablation of the mouse endogenous β-cells. Cystic structures, but no teratomas, were observed in NT-ES-β-cell grafts. Isogenic induced pluripotent stem cell lines showed greater variability in β-cell differentiation. Even though different methods of somatic cell reprogramming result in stem cell lines that are molecularly indistinguishable, full differentiation competence is more common in ES cell lines than in induced pluripotent stem cell lines. These results demonstrate the suitability of NT-ES-β-cells for cell replacement for type 1 diabetes and provide proof of principle for therapeutic cloning combined with cell therapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2337/db17-0120DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5741143PMC
January 2018

Age-dependent human β cell proliferation induced by glucagon-like peptide 1 and calcineurin signaling.

J Clin Invest 2017 Oct 18;127(10):3835-3844. Epub 2017 Sep 18.

Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.

Inadequate pancreatic β cell function underlies type 1 and type 2 diabetes mellitus. Strategies to expand functional cells have focused on discovering and controlling mechanisms that limit the proliferation of human β cells. Here, we developed an engraftment strategy to examine age-associated human islet cell replication competence and reveal mechanisms underlying age-dependent decline of β cell proliferation in human islets. We found that exendin-4 (Ex-4), an agonist of the glucagon-like peptide 1 receptor (GLP-1R), stimulates human β cell proliferation in juvenile but not adult islets. This age-dependent responsiveness does not reflect loss of GLP-1R signaling in adult islets, since Ex-4 treatment stimulated insulin secretion by both juvenile and adult human β cells. We show that the mitogenic effect of Ex-4 requires calcineurin/nuclear factor of activated T cells (NFAT) signaling. In juvenile islets, Ex-4 induced expression of calcineurin/NFAT signaling components as well as target genes for proliferation-promoting factors, including NFATC1, FOXM1, and CCNA1. By contrast, expression of these factors in adult islet β cells was not affected by Ex-4 exposure. These studies reveal age-dependent signaling mechanisms regulating human β cell proliferation, and identify elements that could be adapted for therapeutic expansion of human β cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1172/JCI91761DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5617654PMC
October 2017

Interrupted Glucagon Signaling Reveals Hepatic α Cell Axis and Role for L-Glutamine in α Cell Proliferation.

Cell Metab 2017 Jun;25(6):1362-1373.e5

Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; VA Tennessee Valley Healthcare, Nashville, TN 37212, USA. Electronic address:

Decreasing glucagon action lowers the blood glucose and may be useful therapeutically for diabetes. However, interrupted glucagon signaling leads to α cell proliferation. To identify postulated hepatic-derived circulating factor(s) responsible for α cell proliferation, we used transcriptomics/proteomics/metabolomics in three models of interrupted glucagon signaling and found that proliferation of mouse, zebrafish, and human α cells was mTOR and FoxP transcription factor dependent. Changes in hepatic amino acid (AA) catabolism gene expression predicted the observed increase in circulating AAs. Mimicking these AA levels stimulated α cell proliferation in a newly developed in vitro assay with L-glutamine being a critical AA. α cell expression of the AA transporter Slc38a5 was markedly increased in mice with interrupted glucagon signaling and played a role in α cell proliferation. These results indicate a hepatic α islet cell axis where glucagon regulates serum AA availability and AAs, especially L-glutamine, regulate α cell proliferation and mass via mTOR-dependent nutrient sensing.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmet.2017.05.011DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5572896PMC
June 2017

Age-Dependent Decline in the Coordinated [Ca] and Insulin Secretory Dynamics in Human Pancreatic Islets.

Diabetes 2017 09 6;66(9):2436-2445. Epub 2017 Jun 6.

Department of Bioengineering, University of Colorado, Anschutz Medical Campus, Aurora, CO

Aging is associated with increased risk for type 2 diabetes, resulting from reduced insulin sensitivity and secretion. Reduced insulin secretion can result from reduced proliferative capacity and reduced islet function. Mechanisms underlying altered β-cell function in aging are poorly understood in mouse and human islets, and the impact of aging on intraislet communication has not been characterized. Here, we examine how β-cell [Ca] and electrical communication are impacted during aging in mouse and human islets. Islets from human donors and from mice were studied using [Ca] imaging, static and perifusion insulin secretion assays, and gap junction permeability measurements. In human islets, [Ca] dynamics were coordinated within distinct subregions of the islet, invariant with islet size. There was a marked decline in the coordination of [Ca] dynamics, gap junction coupling, and insulin secretion dynamics with age. These age-dependent declines were reversed by pharmacological gap junction activation. These results show that human islet function declines with aging, which can reduce insulin action and may contribute to increased risk of type 2 diabetes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2337/db17-0137DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5566297PMC
September 2017

Activation of Human T Cells in Hypertension: Studies of Humanized Mice and Hypertensive Humans.

Hypertension 2016 07 23;68(1):123-32. Epub 2016 May 23.

From the Division of Clinical Pharmacology, Department of Medicine (H.A.I., W.G.M., M.A.S., A.E.N., W.C., M.S.M., D.G.H.), General Surgery (W.G.M.), Division of Rheumatology, Department of Medicine (R.H.B.), Division of Endocrinology and Diabetes, Department of Pediatrics (A.F.M., D.J.M.), Division of Endocrinology, Department of Medicine (G.P.), Vanderbilt University Medical Center, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Divison of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, CA (R.R.N., C.M.W.); Department of Internal and Agricultural Medicine, Jagiellonian University School of Medicine, Krakow, Poland (T.P.M., A.M.K., A.K., T.J.G.); Department of Hypertension, Institute of Cardiology, Warsaw, Poland (A.M.K., A.P., A.J.); and Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland (T.J.G.).

Emerging evidence supports an important role for T cells in the genesis of hypertension. Because this work has predominantly been performed in experimental animals, we sought to determine whether human T cells are activated in hypertension. We used a humanized mouse model in which the murine immune system is replaced by the human immune system. Angiotensin II increased systolic pressure to 162 versus 116 mm Hg for sham-treated animals. Flow cytometry of thoracic lymph nodes, thoracic aorta, and kidney revealed increased infiltration of human leukocytes (CD45(+)) and T lymphocytes (CD3(+) and CD4(+)) in response to angiotensin II infusion. Interestingly, there was also an increase in the memory T cells (CD3(+)/CD45RO(+)) in the aortas and lymph nodes. Prevention of hypertension using hydralazine and hydrochlorothiazide prevented the accumulation of T cells in these tissues. Studies of isolated human T cells and monocytes indicated that angiotensin II had no direct effect on cytokine production by T cells or the ability of dendritic cells to drive T-cell proliferation. We also observed an increase in circulating interleukin-17A producing CD4(+) T cells and both CD4(+) and CD8(+) T cells that produce interferon-γ in hypertensive compared with normotensive humans. Thus, human T cells become activated and invade critical end-organ tissues in response to hypertension in a humanized mouse model. This response likely reflects the hypertensive milieu encountered in vivo and is not a direct effect of the hormone angiotensin II.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/HYPERTENSIONAHA.116.07237DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4900908PMC
July 2016

Stress-impaired transcription factor expression and insulin secretion in transplanted human islets.

J Clin Invest 2016 05 11;126(5):1857-70. Epub 2016 Apr 11.

Type 2 diabetes is characterized by insulin resistance, hyperglycemia, and progressive β cell dysfunction. Excess glucose and lipid impair β cell function in islet cell lines, cultured rodent and human islets, and in vivo rodent models. Here, we examined the mechanistic consequences of glucotoxic and lipotoxic conditions on human islets in vivo and developed and/or used 3 complementary models that allowed comparison of the effects of hyperglycemic and/or insulin-resistant metabolic stress conditions on human and mouse islets, which responded quite differently to these challenges. Hyperglycemia and/or insulin resistance impaired insulin secretion only from human islets in vivo. In human grafts, chronic insulin resistance decreased antioxidant enzyme expression and increased superoxide and amyloid formation. In human islet grafts, expression of transcription factors NKX6.1 and MAFB was decreased by chronic insulin resistance, but only MAFB decreased under chronic hyperglycemia. Knockdown of NKX6.1 or MAFB expression in a human β cell line recapitulated the insulin secretion defect seen in vivo. Contrary to rodent islet studies, neither insulin resistance nor hyperglycemia led to human β cell proliferation or apoptosis. These results demonstrate profound differences in how excess glucose or lipid influence mouse and human insulin secretion and β cell activity and show that reduced expression of key islet-enriched transcription factors is an important mediator of glucotoxicity and lipotoxicity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1172/JCI83657DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4855919PMC
May 2016

The PGE2 EP3 Receptor Regulates Diet-Induced Adiposity in Male Mice.

Endocrinology 2016 Jan 20;157(1):220-32. Epub 2015 Oct 20.

Department of Veterans Affairs (A.C.P., M.G., R.M.B.), Tennessee Valley Health Authority, and Department of Medicine (R.M.B.), Division of Nephrology and Hypertension; Departments of Pharmacology (R.P.C., G.M., R.M.B.) and Cell and Developmental Biology (D.L., D.W.T., M.G.); Department of Medicine (M.F.M., G.P., A.C.P., M.G.), Division of Diabetes, Endocrinology, and Metabolism; and Departments of Molecular Physiology and Biophysics (B.A.C., A.C.P., O.P.G., M.G.) and Pathology, Microbiology, and Immunology (K.L.B.), Vanderbilt University Medical Center, Nashville, Tennessee 37232.

Mice carrying a targeted disruption of the prostaglandin E2 (PGE2) E-prostanoid receptor 3 (EP3) gene, Ptger3, were fed a high-fat diet (HFD), or a micronutrient matched control diet, to investigate the effects of disrupted PGE2-EP3 signaling on diabetes in a setting of diet-induced obesity. Although no differences in body weight were seen in mice fed the control diet, when fed a HFD, EP3(-/-) mice gained more weight relative to EP3(+/+) mice. Overall, EP3(-/-) mice had increased epididymal fat mass and adipocyte size; paradoxically, a relative decrease in both epididymal fat pad mass and adipocyte size was observed in the heaviest EP3(-/-) mice. The EP3(-/-) mice had increased macrophage infiltration, TNF-α, monocyte chemoattractant protein-1, IL-6 expression, and necrosis in their epididymal fat pads as compared with EP3(+/+) animals. Adipocytes isolated from EP3(+/+) or EP3(-/-) mice were assayed for the effect of PGE2-evoked inhibition of lipolysis. Adipocytes isolated from EP3(-/-) mice lacked PGE2-evoked inhibition of isoproterenol stimulated lipolysis compared with EP3(+/+). EP3(-/-) mice fed HFD had exaggerated ectopic lipid accumulation in skeletal muscle and liver, with evidence of hepatic steatosis. Both blood glucose and plasma insulin levels were similar between genotypes on a control diet, but when fed HFD, EP3(-/-) mice became hyperglycemic and hyperinsulinemic when compared with EP3(+/+) fed HFD, demonstrating a more severe insulin resistance phenotype in EP3(-/-). These results demonstrate that when fed a HFD, EP3(-/-) mice have abnormal lipid distribution, developing excessive ectopic lipid accumulation and associated insulin resistance.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2015-1693DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4701878PMC
January 2016

Activated FoxM1 attenuates streptozotocin-mediated β-cell death.

Mol Endocrinol 2014 Sep 29;28(9):1435-47. Epub 2014 Jul 29.

Tennessee Valley Healthcare System Department of Veteran Affairs (M.L.G., M.F.M., J.C.D., G.P., M.A.G.), Nashville, Tennessee 37212; Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism (M.L.G., M.F.M., J.C.D., G.P., M.A.G.), and Departments of Cell and Developmental Biology (M.A.G.) and Molecular Physiology and Biophysics (M.A.G.), Vanderbilt University Medical Center, Nashville, Tennessee 37232; and Department of Genetics and Institute for Diabetes, Obesity and Metabolism (J.S., K.H.K.), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104.

The forkhead box transcription factor FoxM1, a positive regulator of the cell cycle, is required for β-cell mass expansion postnatally, during pregnancy, and after partial pancreatectomy. Up-regulation of full-length FoxM1, however, is unable to stimulate increases in β-cell mass in unstressed mice or after partial pancreatectomy, probably due to the lack of posttranslational activation. We hypothesized that expression of an activated form of FoxM1 could aid in recovery after β-cell injury. We therefore derived transgenic mice that inducibly express an activated version of FoxM1 in β-cells (RIP-rtTA;TetO-hemagglutinin (HA)-Foxm1(Δ)(NRD) mice). This N-terminally truncated form of FoxM1 bypasses 2 posttranslational controls: exposure of the forkhead DNA binding domain and targeted proteasomal degradation. Transgenic mice were subjected to streptozotocin (STZ)-induced β-cell ablation to test whether activated FoxM1 can promote β-cell regeneration. Mice expressing HA-FoxM1(ΔNRD) displayed decreased ad libitum-fed blood glucose and increased β-cell mass. β-Cell proliferation was actually decreased in RIP-rtTA:TetO-HA-Foxm1(NRD) mice compared with that in RIP-rtTA mice 7 days after STZ treatment. Unexpectedly, β-cell death was decreased 2 days after STZ treatment. RNA sequencing analysis indicated that activated FoxM1 alters the expression of extracellular matrix and immune cell gene profiles, which may protect against STZ-mediated death. These studies highlight a previously underappreciated role for FoxM1 in promoting β-cell survival.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1210/me.2014-1024DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4154244PMC
September 2014

Islet microenvironment, modulated by vascular endothelial growth factor-A signaling, promotes β cell regeneration.

Cell Metab 2014 Mar 20;19(3):498-511. Epub 2014 Feb 20.

Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; VA Tennessee Valley Healthcare System, Nashville, TN 37212, USA. Electronic address:

Pancreatic islet endocrine cell and endothelial cell (EC) interactions mediated by vascular endothelial growth factor-A (VEGF-A) signaling are important for islet differentiation and the formation of highly vascularized islets. To dissect how VEGF-A signaling modulates intra-islet vasculature, islet microenvironment, and β cell mass, we transiently increased VEGF-A production by β cells. VEGF-A induction dramatically increased the number of intra-islet ECs but led to β cell loss. After withdrawal of the VEGF-A stimulus, β cell mass, function, and islet structure normalized as a result of a robust, but transient, burst in proliferation of pre-existing β cells. Bone marrow-derived macrophages (MΦs) recruited to the site of β cell injury were crucial for the β cell proliferation, which was independent of pancreatic location and circulating factors such as glucose. Identification of the signals responsible for the proliferation of adult, terminally differentiated β cells will improve strategies aimed at β cell regeneration and expansion.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmet.2014.02.001DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4012856PMC
March 2014

Vascular endothelial growth factor-a and islet vascularization are necessary in developing, but not adult, pancreatic islets.

Diabetes 2013 Dec 24;62(12):4154-64. Epub 2013 Jul 24.

Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee.

Pancreatic islets are highly vascularized mini-organs, and vascular endothelial growth factor (VEGF)-A is a critical factor in the development of islet vascularization. To investigate the role of VEGF-A and endothelial cells (ECs) in adult islets, we used complementary genetic approaches to temporally inactivate VEGF-A in developing mouse pancreatic and islet progenitor cells or in adult β-cells. Inactivation of VEGF-A early in development dramatically reduced pancreatic and islet vascularization, leading to reduced β-cell proliferation in both developing and adult islets and, ultimately, reduced β-cell mass and impaired glucose clearance. When VEGF-A was inactivated in adult β-cells, islet vascularization was reduced twofold. Surprisingly, even after 3 months of reduced islet vascularization, islet architecture and β-cell gene expression, mass, and function were preserved with only a minimal abnormality in glucose clearance. These data show that normal pancreatic VEGF-A expression is critical for the recruitment of ECs and the subsequent stimulation of endocrine cell proliferation during islet development. In contrast, although VEGF-A is required for maintaining the specialized vasculature observed in normal adult islets, adult β-cells can adapt and survive long-term reductions in islet vascularity. These results indicate that VEGF-A and islet vascularization have a lesser role in adult islet function and β-cell mass.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2337/db13-0071DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3837071PMC
December 2013

Bioluminescence imaging reveals dynamics of beta cell loss in the non-obese diabetic (NOD) mouse model.

PLoS One 2013 6;8(3):e57784. Epub 2013 Mar 6.

Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, United States of America.

We generated a mouse model (MIP-Luc-VU-NOD) that enables non-invasive bioluminescence imaging (BLI) of beta cell loss during the progression of autoimmune diabetes and determined the relationship between BLI and disease progression. MIP-Luc-VU-NOD mice displayed insulitis and a decline in bioluminescence with age which correlated with beta cell mass, plasma insulin, and pancreatic insulin content. Bioluminescence declined gradually in female MIP-Luc-VU-NOD mice, reaching less than 50% of the initial BLI at 10 weeks of age, whereas hyperglycemia did not ensue until mice were at least 16 weeks old. Mice that did not become diabetic maintained insulin secretion and had less of a decline in bioluminescence than mice that became diabetic. Bioluminescence measurements predicted a decline in beta cell mass prior to the onset of hyperglycemia and tracked beta cell loss. This model should be useful for investigating the fundamental processes underlying autoimmune diabetes and developing new therapies targeting beta cell protection and regeneration.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0057784PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3590285PMC
September 2013

Enhanced expression of VEGF-A in β cells increases endothelial cell number but impairs islet morphogenesis and β cell proliferation.

Dev Biol 2012 Jul 24;367(1):40-54. Epub 2012 Apr 24.

Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA.

There is a reciprocal interaction between pancreatic islet cells and vascular endothelial cells (EC) in which EC-derived signals promote islet cell differentiation and islet development while islet cell-derived angiogenic factors promote EC recruitment and extensive islet vascularization. To examine the role of angiogenic factors in the coordinated development of islets and their associated vessels, we used a "tet-on" inducible system (mice expressing rat insulin promoter-reverse tetracycline activator transgene and a tet-operon-angiogenic factor transgene) to increase the β cell production of vascular endothelial growth factor-A (VEGF-A), angiopoietin-1 (Ang1), or angiopoietin-2 (Ang2) during islet cell differentiation and islet development. In VEGF-A overexpressing embryos, ECs began to accumulate around epithelial tubes residing in the central region of the developing pancreas (associated with endocrine cells) as early as embryonic day 12.5 (E12.5) and increased dramatically by E16.5. While α and β cells formed islet cell clusters in control embryos at E16.5, the increased EC population perturbed endocrine cell differentiation and islet cell clustering in VEGF-A overexpressing embryos. With continued overexpression of VEGF-A, α and β cells became scattered, remained adjacent to ductal structures, and never coalesced into islets, resulting in a reduction in β cell proliferation and β cell mass at postnatal day 1. A similar impact on islet morphology was observed when VEGF-A was overexpressed in β cells during the postnatal period. In contrast, increased expression of Ang1 or Ang2 in β cells in developing or adult islets did not alter islet differentiation, development, or morphology, but altered islet EC ultrastructure. These data indicate that (1) increased EC number does not promote, but actually impairs β cell proliferation and islet formation; (2) the level of VEGF-A production by islet endocrine cells is critical for islet vascularization during development and postnatally; (3) angiopoietin-Tie2 signaling in endothelial cells does not have a crucial role in the development or maintenance of islet vascularization.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ydbio.2012.04.022DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3391601PMC
July 2012

Tamoxifen-Induced Cre-loxP Recombination Is Prolonged in Pancreatic Islets of Adult Mice.

PLoS One 2012 28;7(3):e33529. Epub 2012 Mar 28.

Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America.

Tamoxifen (Tm)-inducible Cre recombinases are widely used to perform gene inactivation and lineage tracing studies in mice. Although the efficiency of inducible Cre-loxP recombination can be easily evaluated with reporter strains, the precise length of time that Tm induces nuclear translocation of CreER(Tm) and subsequent recombination of a target allele is not well defined, and difficult to assess. To better understand the timeline of Tm activity in vivo, we developed a bioassay in which pancreatic islets with a Tm-inducible reporter (from Pdx1(PB)-CreER(Tm);R26R(lacZ) mice) were transplanted beneath the renal capsule of adult mice previously treated with three doses of 1 mg Tm, 8 mg Tm, or corn oil vehicle. Surprisingly, recombination in islet grafts, as assessed by expression of the β-galactosidase (β-gal) reporter, was observed days or weeks after Tm treatment, in a dose-dependent manner. Substantial recombination occurred in islet grafts long after administration of 3×8 mg Tm: in grafts transplanted 48 hours after the last Tm injection, 77.9±0.4% of β-cells were β-gal+; in β-cells placed after 1 week, 46.2±5.0% were β-gal+; after 2 weeks, 26.3±7.0% were β-gal+; and after 4 weeks, 1.9±0.9% were β-gal+. Islet grafts from mice given 3×1 mg Tm showed lower, but notable, recombination 48 hours (4.9±1.7%) and 1 week (4.5±1.9%) after Tm administration. These results show that Tm doses commonly used to induce Cre-loxP recombination may continue to label significant numbers of cells for weeks after Tm treatment, possibly confounding the interpretation of time-sensitive studies using Tm-dependent models. Therefore, investigators developing experimental approaches using Tm-inducible systems should consider both maximal recombination efficiency and the length of time that Tm-induced Cre-loxP recombination occurs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0033529PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3314663PMC
August 2012

Bioluminescence imaging in mouse models quantifies beta cell mass in the pancreas and after islet transplantation.

Mol Imaging Biol 2010 Jan-Feb;12(1):42-53. Epub 2009 Jun 23.

Vanderbilt University, Institute of Imaging Science, Nashville, TN, USA.

Purpose: We developed a mouse model that enables non-invasive assessment of changes in beta cell mass.

Procedures: We generated a transgenic mouse expressing luciferase under control of the mouse insulin I promoter [mouse insulin promoter-luciferase-Vanderbilt University (MIP-Luc-VU)] and characterized this model in mice with increased or decreased beta cell mass and after islet transplantation.

Results: Streptozotocin-induced, diabetic MIP-Luc-VU mice had a progressive decline in bioluminescence that correlated with a decrease in beta cell mass. MIP-Luc-VU animals fed a high-fat diet displayed a progressive increase in bioluminescence that reflected an increase in beta cell mass. MIP-Luc-VU islets transplanted beneath the renal capsule or into the liver emitted bioluminescence proportional to the number of islets transplanted and could be imaged for more than a year.

Conclusions: Bioluminescence in the MIP-Luc-VU mouse model is proportional to beta cell mass in the setting of increased and decreased beta cell mass and after transplantation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11307-009-0240-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3822006PMC
March 2010

Glucose metabolism in vivo in four commonly used inbred mouse strains.

Diabetes 2008 Jul 8;57(7):1790-9. Epub 2008 Apr 8.

Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.

Objective: To characterize differences in whole-body glucose metabolism between commonly used inbred mouse strains.

Research Design And Methods: Hyperinsulinemic-euglycemic (approximately 8.5 mmol/l) and -hypoglycemic (approximately 3.0 mmol/l) clamps were done in catheterized, 5-h-fasted mice to assess insulin action and hypoglycemic counter-regulatory responsiveness. Hyperglycemic clamps (approximately 15 mmol/l) were done to assess insulin secretion and compared with results in perifused islets.

Results: Insulin action and hypoglycemic counter-regulatory and insulin secretory phenotypes varied considerably in four inbred mouse strains. In vivo insulin secretion was greatest in 129X1/Sv mice, but the counter-regulatory response to hypoglycemia was blunted. FVB/N mice in vivo showed no increase in glucose-stimulated insulin secretion, relative hepatic insulin resistance, and the highest counter-regulatory response to hypoglycemia. In DBA/2 mice, insulin action was lowest among the strains, and islets isolated had the greatest glucose-stimulated insulin secretion in vitro. In C57BL/6 mice, in vivo physiological responses to hyperinsulinemia at euglycemia and hypoglycemia were intermediate relative to other strains. Insulin secretion by C57BL/6 mice was similar to that in other strains in contrast to the blunted glucose-stimulated insulin secretion from isolated islets.

Conclusions: Strain-dependent differences exist in four inbred mouse strains frequently used for genetic manipulation and study of glucose metabolism. These results are important for selecting inbred mice to study glucose metabolism and for interpreting and designing experiments.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2337/db07-1615DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2453626PMC
July 2008

Maintenance of hepatic nuclear factor 6 in postnatal islets impairs terminal differentiation and function of beta-cells.

Diabetes 2006 Dec;55(12):3264-70

Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, 2220 Pierce Ave., 746 PRB, Nashville, TN 37232-6303, USA.

The Onecut homeodomain transcription factor hepatic nuclear factor 6 (Hnf6) is necessary for proper development of islet beta-cells. Hnf6 is initially expressed throughout the pancreatic epithelium but is downregulated in endocrine cells at late gestation and is not expressed in postnatal islets. Transgenic mice in which Hnf6 expression is maintained in postnatal islets (pdx1(PB)Hnf6) show overt diabetes and impaired glucose-stimulated insulin secretion (GSIS) at weaning. We now define the mechanism whereby maintenance of Hnf6 expression postnatally leads to beta-cell dysfunction. We provide evidence that continued expression of Hnf6 impairs GSIS by altering insulin granule biosynthesis, resulting in a reduced response to secretagogues. Sustained expression of Hnf6 also results in downregulation of the beta-cell-specific transcription factor MafA and a decrease in total pancreatic insulin. These results suggest that downregulation of Hnf6 expression in beta-cells during development is essential to achieve a mature, glucose-responsive beta-cell.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2337/db06-0090DOI Listing
December 2006

Pancreatic islet production of vascular endothelial growth factor--a is essential for islet vascularization, revascularization, and function.

Diabetes 2006 Nov;55(11):2974-85

Division of Diabetes, Endocrinology, and Metabolism, 715 PRB, Vanderbilt University, Nashville, TN 37232, USA.

To investigate molecular mechanisms controlling islet vascularization and revascularization after transplantation, we examined pancreatic expression of three families of angiogenic factors and their receptors in differentiating endocrine cells and adult islets. Using intravital lectin labeling, we demonstrated that development of islet microvasculature and establishment of islet blood flow occur concomitantly with islet morphogenesis. Our genetic data indicate that vascular endothelial growth factor (VEGF)-A is a major regulator of islet vascularization and revascularization of transplanted islets. In spite of normal pancreatic insulin content and beta-cell mass, mice with beta-cell-reduced VEGF-A expression had impaired glucose-stimulated insulin secretion. By vascular or diffusion delivery of beta-cell secretagogues to islets, we showed that reduced insulin output is not a result of beta-cell dysfunction but rather caused by vascular alterations in islets. Taken together, our data indicate that the microvasculature plays an integral role in islet function. Factors modulating VEGF-A expression may influence islet vascularity and, consequently, the amount of insulin delivered into the systemic circulation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2337/db06-0690DOI Listing
November 2006

Generation of islet-like hormone-producing cells in vitro from adult human pancreas.

Cell Transplant 2005 ;14(10):735-48

Islet and Autoimmunity Branch, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1453, USA.

Transplantation of pancreatic islets can provide long-lasting insulin independence for diabetic patients, but the current islet supply is limited. Here we describe a new in vitro system that utilizes adult human pancreatic islet-enriched fractions to generate hormone-producing cells over 3-4 weeks of culture. By labeling proliferating cells with a retrovirus-expressing green fluorescent protein, we show that in this system hormone-producing cells are generated de novo. These hormone-producing cells aggregate to form islet-like cell clusters. The cell clusters, when tested in vitro, release insulin in response to glucose and other secretagogues. After transplantation into immunodeficient, nondiabetic mice, the islet-like cell clusters survive and release human insulin. We propose that this system will be useful as an experimental tool for investigating mechanisms for generating new islet cells from the postnatal pancreas, and for designing strategies to generate physiologically competent pancreatic islet cells ex vivo.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3727/000000005783982602DOI Listing
March 2006
-->