Publications by authors named "Grazyna Wieczorek"

24 Publications

  • Page 1 of 1

CARD10 cleavage by MALT1 restricts lung carcinoma growth in vivo.

Oncogenesis 2021 Apr 6;10(4):32. Epub 2021 Apr 6.

Autoimmunity, Transplantation & Inflammation, Novartis Institutes for BioMedical Research (NIBR), Novartis Campus, Basel, Switzerland.

CARD-CC complexes involving BCL10 and MALT1 are major cellular signaling hubs. They govern NF-κB activation through their scaffolding properties as well as MALT1 paracaspase function, which cleaves substrates involved in NF-κB regulation. In human lymphocytes, gain-of-function defects in this pathway lead to lymphoproliferative disorders. CARD10, the prototypical CARD-CC protein in non-hematopoietic cells, is overexpressed in several cancers and has been associated with poor prognosis. However, regulation of CARD10 remains poorly understood. Here, we identified CARD10 as the first MALT1 substrate in non-hematopoietic cells and showed that CARD10 cleavage by MALT1 at R587 dampens its capacity to activate NF-κB. Preventing CARD10 cleavage in the lung tumor A549 cell line increased basal levels of IL-6 and extracellular matrix components in vitro, and led to increased tumor growth in a mouse xenograft model, suggesting that CARD10 cleavage by MALT1 might be a built-in mechanism controlling tumorigenicity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41389-021-00321-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8024357PMC
April 2021

Discovery of LYS006, a Potent and Highly Selective Inhibitor of Leukotriene A Hydrolase.

J Med Chem 2021 02 16;64(4):1889-1903. Epub 2021 Feb 16.

The cytosolic metalloenzyme leukotriene A hydrolase (LTA4H) is the final and rate-limiting enzyme in the biosynthesis of pro-inflammatory leukotriene B (LTB). Preclinical studies have validated this enzyme as an attractive drug target in chronic inflammatory diseases. Despite several attempts, no LTA4H inhibitor has reached the market, yet. Herein, we disclose the discovery and preclinical profile of LYS006, a highly potent and selective LTA4H inhibitor. A focused fragment screen identified hits that could be cocrystallized with LTA4H and inspired a fragment merging. Further optimization led to chiral amino acids and ultimately to LYS006, a picomolar LTA4H inhibitor with exquisite whole blood potency and long-lasting pharmacodynamic effects. Due to its high selectivity and its ability to fully suppress LTB generation at low exposures , LYS006 has the potential for a best-in-class LTA4H inhibitor and is currently investigated in phase II clinical trials in inflammatory acne, hidradenitis suppurativa, ulcerative colitis, and NASH.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.0c01955DOI Listing
February 2021

Lipidomics Profiling of Hidradenitis Suppurativa Skin Lesions Reveals Lipoxygenase Pathway Dysregulation and Accumulation of Proinflammatory Leukotriene B4.

J Invest Dermatol 2020 12 5;140(12):2421-2432.e10. Epub 2020 May 5.

Autoimmunity, Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland. Electronic address:

Hidradenitis suppurativa (HS) is a chronic, recurring inflammatory dermatosis characterized by abscesses, deep-seated nodules, sinus tracts, and fibrosis in skin lesions around hair follicles of the axillary, inguinal, and anogenital regions. Whereas the exact pathogenesis remains poorly defined, clear evidence suggests that HS is a multifactorial inflammatory disease characterized by innate and adaptive immune components. Bioactive lipids are important regulators of cutaneous homeostasis, inflammation, and resolution of inflammation. Alterations in the lipid mediator profile can lead to malfunction and cutaneous inflammation. We used targeted lipidomics to analyze selected omega-3 and omega-6 polyunsaturated fatty acids in skin of patients with HS and of healthy volunteers. Lesional HS skin displayed enrichment of 5-lipoxygenase (LO)‒derived metabolites, especially leukotriene B4. In addition, 15-LO‒derived metabolites were underrepresented in HS lesions. Changes in the lipid mediator profile were accompanied by transcriptomic dysregulation of the 5-LO and 15-LO pathways. Hyperactivation of the 5-LO pathway in lesional macrophages identified these cells as potential sources of leukotriene B4, which may cause neutrophil influx and activation. Furthermore, leukotriene B4-induced mediators and pathways were elevated in HS lesions, suggesting a contribution of this proinflammatory lipid meditator to the pathophysiology of HS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jid.2020.04.011DOI Listing
December 2020

Discovery of LOU064 (Remibrutinib), a Potent and Highly Selective Covalent Inhibitor of Bruton's Tyrosine Kinase.

J Med Chem 2020 05 4;63(10):5102-5118. Epub 2020 Mar 4.

Bruton's tyrosine kinase (BTK), a cytoplasmic tyrosine kinase, plays a central role in immunity and is considered an attractive target for treating autoimmune diseases. The use of currently marketed covalent BTK inhibitors is limited to oncology indications based on their suboptimal kinase selectivity. We describe the discovery and preclinical profile of LOU064 (remibrutinib, ), a potent, highly selective covalent BTK inhibitor. LOU064 exhibits an exquisite kinase selectivity due to binding to an inactive conformation of BTK and has the potential for a best-in-class covalent BTK inhibitor for the treatment of autoimmune diseases. It demonstrates potent target occupancy with an EC of 1.6 mg/kg and dose-dependent efficacy in rat collagen-induced arthritis. LOU064 is currently being tested in phase 2 clinical studies for chronic spontaneous urticaria and Sjoegren's syndrome.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.9b01916DOI Listing
May 2020

Immune cell landscaping reveals a protective role for regulatory T cells during kidney injury and fibrosis.

JCI Insight 2020 02 13;5(3). Epub 2020 Feb 13.

Novartis Institutes for Biomedical Research, Basel, Switzerland.

Acute kidney injury (AKI) and chronic kidney diseases are associated with high mortality and morbidity. Although the underlying mechanisms determining the transition from acute to chronic injury are not completely understood, immune-mediated processes are critical in renal injury. We have performed a comparison of 2 mouse models leading to either kidney regeneration or fibrosis. Using global gene expression profiling we could identify immune-related pathways accounting for the majority of the observed transcriptional changes during fibrosis. Unbiased examination of the immune cell composition, using single-cell RNA sequencing, revealed major changes in tissue-resident macrophages and T cells. Following injury, there was a marked increase in tissue-resident IL-33R+ and IL-2Ra+ regulatory T cells (Tregs). Expansion of this population before injury protected the kidney from injury and fibrosis. Transcriptional profiling of Tregs showed a differential upregulation of regenerative and proangiogenic pathways during regeneration, whereas in the fibrotic environment they expressed markers of hyperactivation and fibrosis. Our data point to a hitherto underappreciated plasticity in Treg function within the same tissue, dictated by environmental cues. Overall, we provide a detailed cellular and molecular characterization of the immunological changes during kidney injury, regeneration, and fibrosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1172/jci.insight.130651DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7098794PMC
February 2020

The NLRP3 inflammasome pathway is activated in sarcoidosis and involved in granuloma formation.

Eur Respir J 2020 03 26;55(3). Epub 2020 Mar 26.

Fraunhofer ITEM, Hannover, Germany

Sarcoidosis is a disease characterised by granuloma formation. There is an unmet need for new treatment strategies beyond corticosteroids. The NLRP3 inflammasome pathway is expressed in innate immune cells and senses danger signals to elicit inflammatory interleukin (IL)-1β; it has recently become a druggable target. This prompted us to test the role of the NLRP3 inflammasome and IL-1β pathway in granuloma formation and sarcoidosis.19 sarcoid patients and 19 healthy volunteers were recruited into this pilot study. NLRP3 inflammasome activity was measured in bronchoalveolar lavage (BAL) cells and lung and skin biopsies using immunohistochemistry, Western blot, reverse-transcriptase PCR and ELISA. For experiments we used the trehalose 6,6'-dimycolate-granuloma mouse model and evaluated lung granuloma burden in miR-223 knockout and NLRP3 knockout mice, as well as the treatment effects of MCC950 and anti-IL-1β antibody therapy.We found strong upregulation of the NLRP3 inflammasome pathway, evidenced by expression of activated NLRP3 inflammasome components, including cleaved caspase-1 and IL-1β in lung granuloma, and increased IL-1β release of BAL cells from sarcoid patients compared to healthy volunteers (p=0.006). mRNA levels of miR-223, a micro-RNA downregulating NLRP3, were decreased and NLRP3 mRNA correspondingly increased in alveolar macrophages from sarcoid patients (p<0.005). NLRP3 knockout mice showed decreased and miR-223 knockout mice increased granuloma formation compared to wild-type mice. Pharmacological interference using NLRP3 pathway inhibitor MCC950 or an anti-IL-1β antibody resulted in reduced granuloma formation (p<0.02).In conclusion, our data provide evidence of upregulated inflammasome and IL-1β pathway activation in sarcoidosis and suggest both as valid therapeutic targets.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1183/13993003.00119-2019DOI Listing
March 2020

Requirement of Mucosa-Associated Lymphoid Tissue Lymphoma Translocation Protein 1 Protease Activity for Fcγ Receptor-Induced Arthritis, but Not Fcγ Receptor-Mediated Platelet Elimination, in Mice.

Arthritis Rheumatol 2020 06 26;72(6):919-930. Epub 2020 Apr 26.

Novartis Institutes for BioMedical Research, Basel, Switzerland.

Objective: Fcγ receptors (FcγR) play important roles in both protective and pathogenic immune responses. The assembly of the CBM signalosome encompassing caspase recruitment domain-containing protein 9, B cell CLL/lymphoma 10, and mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT-1) is required for optimal FcγR-induced canonical NF-κB activation and proinflammatory cytokine release. This study was undertaken to clarify the relevance of MALT-1 protease activity in FcγR-driven events and evaluate the therapeutic potential of selective MALT-1 protease inhibitors in FcγR-mediated diseases.

Methods: Using genetic and pharmacologic disruption of MALT-1 scaffolding and enzymatic activity, we assessed the relevance of MALT-1 function in murine and human primary myeloid cells upon stimulation with immune complexes (ICs) and in murine models of autoantibody-driven arthritis and immune thrombocytopenic purpura (ITP).

Results: MALT-1 protease function is essential for optimal FcγR-induced production of proinflammatory cytokines by various murine and human myeloid cells stimulated with ICs. In contrast, MALT-1 protease inhibition did not affect the Syk-dependent, FcγR-mediated production of reactive oxygen species or leukotriene B . Notably, pharmacologic MALT-1 protease inhibition in vivo reduced joint inflammation in the murine K/BxN serum-induced arthritis model (mean area under the curve for paw swelling of 45.42% versus 100% in control mice; P = 0.0007) but did not affect platelet depletion in a passive model of ITP.

Conclusion: Our findings indicate a specific contribution of MALT-1 protease activity to FcγR-mediated events and suggest that MALT-1 protease inhibitors have therapeutic potential in a subset of FcγR-driven inflammatory disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/art.41204DOI Listing
June 2020

Small-molecule factor B inhibitor for the treatment of complement-mediated diseases.

Proc Natl Acad Sci U S A 2019 04 29;116(16):7926-7931. Epub 2019 Mar 29.

Novartis Institutes for BioMedical Research, Cambridge, MA 02139.

Dysregulation of the alternative complement pathway (AP) predisposes individuals to a number of diseases including paroxysmal nocturnal hemoglobinuria, atypical hemolytic uremic syndrome, and C3 glomerulopathy. Moreover, glomerular Ig deposits can lead to complement-driven nephropathies. Here we describe the discovery of a highly potent, reversible, and selective small-molecule inhibitor of factor B, a serine protease that drives the central amplification loop of the AP. Oral administration of the inhibitor prevents KRN-induced arthritis in mice and is effective upon prophylactic and therapeutic dosing in an experimental model of membranous nephropathy in rats. In addition, inhibition of factor B prevents complement activation in sera from C3 glomerulopathy patients and the hemolysis of human PNH erythrocytes. These data demonstrate the potential therapeutic value of using a factor B inhibitor for systemic treatment of complement-mediated diseases and provide a basis for its clinical development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1820892116DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6475383PMC
April 2019

Blockade of CD40-CD154 pathway interactions suppresses ectopic lymphoid structures and inhibits pathology in the NOD/ShiLtJ mouse model of Sjögren's syndrome.

Ann Rheum Dis 2019 07 22;78(7):974-978. Epub 2019 Mar 22.

Department of Autoimmunity, Transplantation and Inflammation, Novartis Institutes for BioMedical Research Basel, Basel, Switzerland

Objective: To examine the role of CD40-CD154 costimulation and effects of therapeutic pathway blockade in the non-obese diabetic (NOD/ShiLtJ) model of Sjögren's syndrome (SS).

Methods: We assessed leucocyte infiltration in salivary glands (SGs) from NOD/ShiLtJ mice by immunohistochemistry and examined transcriptomics data of SG tissue from these animals for evidence of a CD40 pathway gene signature. Additionally, we dosed MR1 (anti-CD154 antibody) in NOD mice after the onset of SS-like disease and examined the effects of MR1 treatment on sialadenitis, autoantibody production, SG leucocyte infiltration, gene expression downstream of CD40 and acquaporin 5 (AQP5) expression.

Results: We could detect evidence of CD40 expression and pathway activation in SG tissue from NOD mice. Additionally, therapeutic treatment with MR1 suppressed CD40 pathway genes and sialadenitis, inhibited ectopic lymphoid structure formation and autoantibody production, as well as decreased the frequency of antibody-secreting cells in SGs but had minimal effects on AQP5 expression in NOD/ShiLtJ SGs.

Conclusion: CD40-CD154 interactions play an important role in key pathological processes in a mouse model of SS, suggesting that blockade of this costimulatory pathway in the clinic may have beneficial therapeutic effects in patients suffering from this autoimmune exocrinopathy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/annrheumdis-2018-213929DOI Listing
July 2019

Evidence that a neutrophil-keratinocyte crosstalk is an early target of IL-17A inhibition in psoriasis.

Exp Dermatol 2015 Jul 8;24(7):529-35. Epub 2015 May 8.

Novartis Institutes for BioMedical Research, Basel, Switzerland.

The response of psoriasis to antibodies targeting the interleukin (IL)-23/IL-17A pathway suggests a prominent role of T-helper type-17 (Th17) cells in this disease. We examined the clinical and immunological response patterns of 100 subjects with moderate-to-severe psoriasis receiving 3 different intravenous dosing regimens of the anti-IL-17A antibody secukinumab (1 × 3 mg/kg or 1 × 10 mg/kg on Day 1, or 3 × 10 mg/kg on Days 1, 15 and 29) or placebo in a phase 2 trial. Baseline biopsies revealed typical features of active psoriasis, including epidermal accumulation of neutrophils and formation of microabscesses in >60% of cases. Neutrophils were the numerically largest fraction of infiltrating cells containing IL-17 and may store the cytokine preformed, as IL-17A mRNA was not detectable in neutrophils isolated from active plaques. Significant clinical responses to secukinumab were observed 2 weeks after a single infusion, associated with extensive clearance of cutaneous neutrophils parallel to the normalization of keratinocyte abnormalities and reduction of IL-17-inducible neutrophil chemoattractants (e.g. CXCL1, CXCL8); effects on numbers of T cells and CD11c-positive dendritic cells were more delayed. Histological and immunological improvements were generally dose dependent and not observed in the placebo group. In the lowest-dose group, a recurrence of neutrophils was seen in some subjects at Week 12; these subjects relapsed faster than those without microabscesses. Our findings are indicative of a neutrophil-keratinocyte axis in psoriasis that may involve neutrophil-derived IL-17 and is an early target of IL-17A-directed therapies such as secukinumab.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/exd.12710DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4676308PMC
July 2015

Sotrastaurin (AEB071) alone and in combination with cyclosporine A prolongs survival times of non-human primate recipients of life-supporting kidney allografts.

Transplantation 2012 Jan;93(2):156-64

Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel, Switzerland.

Background: Sotrastaurin (STN), a novel oral protein kinase C inhibitor that inhibits early T-cell activation, was assessed in non-human primate recipients of life-supporting kidney allografts.

Methods: Cynomolgus monkey recipients of life-supporting kidney allografts were treated orally with STN alone or in combination with cyclosporine A (CsA).

Results: STN monotherapy at 50 mg/kg once daily prolonged recipient survival times to the predefined endpoint of 29 days (n=2); when given at 25 mg/kg twice daily, the median survival time (MST) was 27 days (n=4). Neither once-daily monotherapy of STN 20 mg/kg nor CsA 20 mg/kg was effective (MST 6 days [n=2] and 7 days [n=5], respectively). In combination, however, STN 20 mg/kg and CsA 20 mg/kg prolonged MST to more than 100 days (n=5). By combining lower once-daily doses of STN (7 or 2 mg/kg) with CsA (20 mg/kg), MST was more than 100 (n=3) and 22 days (n=2), respectively. Neither in single-dose pharmacokinetic studies nor the transplant recipients were STN or CsA blood levels for combined treatment greater than when either drug was administered alone. STN blood levels in transplant recipients during combination therapy were dose related (20 mg/kg, 30-182 ng/mL; 7 mg/kg, 7-41 ng/mL; and 2 mg/kg, 3-5 ng/mL). STN at a daily dose of up to 20 mg/kg was relatively well tolerated.

Conclusions: STN prolonged survival times of non-human primate kidney allograft recipients both as monotherapy and most effectively in combination with CsA. Pharmacokinetic interactions were not responsible for the potentiation of immunosuppressive efficacy by coadministering STN and CsA.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/TP.0b013e31823cf92fDOI Listing
January 2012

Effects of the novel protein kinase C inhibitor AEB071 (Sotrastaurin) on rat cardiac allograft survival using single agent treatment or combination therapy with cyclosporine, everolimus or FTY720.

Transpl Int 2010 May 9;23(5):543-52. Epub 2009 Dec 9.

Novartis Institutes for BioMedical Research, Autoimmunity and Transplantation Disease Area, Novartis Pharma AG, Basel, Switzerland.

NVP-AEB071 (AEB, sotrastaurin), an oral inhibitor of protein kinase C (PKC), effectively blocks T-cell activation. The immunosuppressive effects of oral AEB were demonstrated in a rat local graft versus host (GvH) reaction and rat cardiac transplantation models. T-cell activation was suppressed by 95% in blood from AEB-treated rats, with a positive correlation between T-cell inhibition and AEB blood concentration. In GvH studies, AEB inhibited lymph node swelling dose-dependently (3-30 mg/kg). BN and DA cardiac allografts were acutely rejected within 6-10 days post-transplantation in untreated LEW rats. AEB at 10 and 30 mg/kg b.i.d. prolonged BN graft survival to a mean survival time of 15 and >28 days, and DA grafts to 6.5 and 17.5 days, respectively. In the DA to LEW model, combining a nonefficacious dose of AEB (10 mg/kg b.i.d.) with a nonefficacious dose of cyclosporine, everolimus or FTY720 led to prolonged median survival times (26 days, >68 days and >68 days, respectively). Pharmacokinetic monitoring excluded drug-drug interactions, suggesting synergy. In conclusion, these studies are the first to demonstrate that AEB prolongs rat heart allograft survival safely as monotherapy and in combination with nonefficacious doses of cyclosporine, everolimus or FTY720. Thus, AEB may have the potential to offer an alternative to calcineurin inhibitor-based therapies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1432-2277.2009.01015.xDOI Listing
May 2010

Analysis of independent microarray datasets of renal biopsies identifies a robust transcript signature of acute allograft rejection.

Transpl Int 2009 Mar 6;22(3):293-302. Epub 2008 Nov 6.

Novartis Institutes for BioMedical Research, Basel, Switzerland.

Transcriptomics could contribute significantly to the early and specific diagnosis of rejection episodes by defining 'molecular Banff' signatures. Recently, the description of pathogenesis-based transcript sets offered a new opportunity for objective and quantitative diagnosis. Generating high-quality transcript panels is thus critical to define high-performance diagnostic classifier. In this study, a comparative analysis was performed across four different microarray datasets of heterogeneous sample collections from two published clinical datasets and two own datasets including biopsies for clinical indication, and samples from nonhuman primates. We characterized a common transcriptional profile of 70 genes, defined as acute rejection transcript set (ARTS). ARTS expression is significantly up-regulated in all AR samples as compared with stable allografts or healthy kidneys, and strongly correlates with the severity of Banff AR types. Similarly, ARTS were tested as a classifier in a large collection of 143 independent biopsies recently published by the University of Alberta. Results demonstrate that the 'in silico' approach applied in this study is able to identify a robust and reliable molecular signature for AR, supporting a specific and sensitive molecular diagnostic approach for renal transplant monitoring.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1432-2277.2008.00790.xDOI Listing
March 2009

Palisade endings: cholinergic sensory organs or effector organs?

Invest Ophthalmol Vis Sci 2009 Mar 20;50(3):1176-86. Epub 2008 Oct 20.

Center of Anatomy and Cell Biology, Medical University Vienna, Vienna, Austria.

Purpose: This study aims to complement the authors' prior findings on palisade endings in extraocular muscles (EOMs) of monkeys, and to clarify whether palisade endings are cholinergic motor or cholinergic sensory.

Methods: Macaque monkeys (Macaca fascicularis, n = 10) of both sexes were analyzed using three-dimensional (3D) reconstructions, confocal laser scanning microscopy (CLSM), and conventional/immuno transmission electron microscopy (TEM). For CLSM, we used three combinations of triple fluorescent labeling. EOM wholemounts were labeled with cholinergic markers, including choline acetyltransferase (ChAT), choline transporter (ChT), vesicular acetylcholine transporter (VAChT), and a classical postsynaptic marker for motor terminals, namely alpha-bungarotoxin. Muscle fibers were counterstained with phalloidin. 3D reconstructions were done of triple-labeled palisade endings. For immuno TEM, tissue was labeled with antibody against ChAT.

Results: Concordant with prior findings, the authors demonstrated that palisade endings at the muscle fiber tips arose from nerve fibers that are ChAT-positive. In 25% of the cases, axons forming palisade endings established multiple neuromuscular contacts outside the palisade complex. Such additional neuromuscular contacts were motor terminals, as demonstrated by alpha-bungarotoxin binding. All palisade endings established nerve terminals on the tendon. In 40% of the palisade endings, nerve terminals were observed on the muscle fiber as well. Neurotendinous contacts and neuromuscular contacts in palisade endings were ChT/ChAT/VAChT-immunoreactive. Neuromuscular contacts exhibited structural features of motor terminals and were also alpha-bungarotoxin positive.

Conclusions: The present study ascertained that palisade endings are cholinergic motor organs. Therefore, it was concluded that palisade endings are not candidates to provide eye-position signals.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1167/iovs.08-2748DOI Listing
March 2009

Differential promotion of hematopoietic chimerism and inhibition of alloreactive T cell proliferation by combinations of anti-CD40Ligand, anti-LFA-1, everolimus, and deoxyspergualin.

Transpl Immunol 2008 Nov 31;20(1-2):106-12. Epub 2008 Jul 31.

Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland.

Allogeneic bone marrow (BM) engraftment for chimerism and transplantation tolerance may be promoted by combinations of costimulation blocking biologics and small molecular weight inhibitors. We showed previously in a mouse model that anti-CD40Ligand (anti-CD40L, CD154) combined with anti-LFA-1 or everolimus (40-O-(2-hydroxyethyl)-rapamycin) resulted in stable chimerism in almost all BM recipients, whereas anti-LFA-1 plus everolimus conferred approximately 50% chimerism stability. Here, we investigated whether this lower incidence could be increased with deoxyspergualin (DSG) in place of or in addition to everolimus. However, DSG and everolimus were similarly synergistic with costimulation blockade for stable hematopoietic chimerism. This correlated with allospecific T cell depletion and inhibition of acute but not chronic skin allograft rejection. Different treatments were also compared for their inhibition of alloreactive T cell proliferation in vivo. While anti-CD40L did not impair T cell proliferation, anti-LFA-1 reduced both CD4 and CD8 T cell proliferation, and combining anti-LFA-1 with everolimus or DSG had an additive inhibitory effect on CD4 T cell proliferation. Thus, despite their strong inhibition of alloreactive T cell proliferation, combinations of anti-LFA-1 with everolimus or DSG did not reach the unique potency of anti-CD40L-based combinations to support stable hematopoietic chimerism in this system.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.trim.2008.07.002DOI Listing
November 2008

Modulation of T cell homeostasis and alloreactivity under continuous FTY720 exposure.

Int Immunol 2008 May 14;20(5):633-44. Epub 2008 Mar 14.

Department of Autoimmunity and Transplantation, Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland.

The immunomodulator FTY720 inhibits lymph node (LN) and thymic egress, thereby constraining T cell circulation and reducing peripheral T cell numbers. Here, we analyzed in mouse models the as yet scarcely characterized impact of long-term (up to 6 months) FTY720 exposure on T cell homeostasis and possible consequences for alloreactivity. In green fluorescent protein (GFP) hemopoietic chimeras, the turnover of (initially GFP(-)) peripheral T cell pools was markedly delayed under FTY720, while normal homeostatic differences between CD4 and CD8 T cell sub-populations were retained or amplified further. Homeostatic proliferation was enhanced, and within shrinking T cell pools, the proportions of effector memory phenotype CD4 T cells (CD4T(PEM)) increased in spleens and LNs and of central memory phenotype CD8 T cells (CD8T(PCM)) in LNs. By contrast, the fractions of CD8T(PEM) and CD4T(PCM) remained stably small under FTY720. The enrichment for CD4T(PEM) and CD8T(PCM) correlated with larger proportions of IFNgamma-producing T cells upon nonspecific but not allospecific stimulation. Splenic CD4 T cells from FTY720-treated mice proliferated more strongly upon transfer to semi-allogeneic hosts. However, heart allograft survival was not compromised in FTY720 pre-treated recipients. It correlated with reduced intra-graft CD8 T cells, and the longest surviving transplants contained the highest numbers of CD4 T cells. Thus, continuous FTY720 exposure reveals differential homeostatic responses by memory phenotype CD4 and CD8 T cell sub-populations, and it may enhance alloreactive CD4 T cell proliferation and tissue infiltration without accelerating allograft rejection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/intimm/dxn023DOI Listing
May 2008

Anti-LFA-1 monotherapy prevents neointimal formation in a murine model of transplant intimal hyperplasia.

J Heart Lung Transplant 2007 Jul;26(7):724-31

Department of Cardiac Surgery, National Heart and Lung Institute, London, UK.

Background: Cardiac allograft vasculopathy (CAV) is the pre-eminent cause of late cardiac allograft failure. It is characterized by a concentric intimal hyperplasia, which we designate transplant intimal hyperplasia (TIH). To date, blockade of the adhesion molecule lymphocyte function-associated antigen-1 (LFA-1) has been shown to be effective in preventing TIH in experimental models of transplantation, but only when combined with other immunosuppressants. In this study we explored the impact of monotherapy against LFA-1 in a carotid artery allograft model of TIH.

Methods: B10A(2R) (H-2(h2)) mice were used as donors and C57BL/6 (H-2(b)) mice used as recipients. The recipients were treated with a monoclonal antibody against LFA-1alpha (M17/4) or isotype-matched control immunoglobulin. Grafts were harvested after 35 days and analyzed by histomorphometry and immunohistochemistry. Blood samples were taken and analyzed by differential cell count and alloantibody levels.

Results: We found that treatment with M17/4 resulted in a significant reduction in TIH compared with controls. Immunostaining revealed that LFA-1alpha blockade inhibited CD45+ leukocyte infiltration, prevented intimal smooth muscle cell (SMC) proliferation, and preserved the medial SMC population. Finally, we demonstrated a reduction in the serum alloantibody titer in the group treated with anti-LFA-1alpha when compared with controls.

Conclusions: We have demonstrated for the first time that LFA-1alpha blockade on its own can prevent development of TIH in an experimental model. The concept of modulating LFA-1alpha-mediated leukocyte migration and T-cell activation may therefore be of relevance to clinical cardiac transplantation and, as such, represents a potential target for therapeutic intervention against clinical CAV.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.healun.2007.04.007DOI Listing
July 2007

Strongly reduced alloreactivity and long-term survival times of cardiac allografts in Vav1- and Vav1/Vav2-knockout mice.

Transpl Int 2007 Apr;20(4):353-64

Autoimmunity and Transplantation, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland.

Vav proteins mediate T- and B-cell activation by functioning as GTP/GDP exchange factors for small GTPases. We have studied the role of Vav1 and Vav2 in allogeneic T-cell activation, antibody responses and allograft rejection. Alloantigen-induced proliferation of T cells from Vav1- and Vav1/Vav2-knockout (ko) mice was decreased by >90% in a mixed lymphocyte reaction. In whole-blood cultures, Vav deficiency led to markedly impaired T- and B-cell activation. Expansion of Vav1- or Vav1/Vav2-ko T cells (C57BL/6) was reduced after transfer into severe combined immune deficiency/beige recipient mice (BALB/c). After priming with 2,4-dinitrophenyl (DNP)-keyhole limpet hemocyanin, T-cell-dependent anti-DNP IgM and IgG antibody levels were normal in Vav1-ko mice but undetectable in Vav1/Vav2-ko mice. The median survival time of BALB/c cardiac allografts transplanted into C57BL/6 Vav1-ko mice (n = 13) or Vav1/Vav2-ko mice (n = 5) was >100 and >77 days, compared with 8-9 days in the corresponding wild-type mice. Vav1/Vav2-ko mice with <100 days graft survival developed bacterial skin infections and were prematurely killed with beating cardiac allograft. Long-term surviving transplants of single and double ko mice showed mild cellular interstitial rejection and mild to severe vascular remodeling. In conclusion, our studies show for the first time that the absence of Vav1 and Vav1/Vav2 in ko mice strongly reduces alloreactivity and results in long-term allograft survival, whereas antibody responses were only affected in Vav1/Vav2 ko mice.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1432-2277.2006.00438.xDOI Listing
April 2007

Investigation of serotonin type 4 receptor expression in human and non-human primate gastrointestinal samples.

Eur J Gastroenterol Hepatol 2006 Sep;18(9):945-50

Novartis Institutes for BioMedical Research, GI Department, Basel, Switzerland.

Background: The serotonin type 4 (5-HT4) receptor has been associated with functions of the gastrointestinal tract such as modulation of the peristaltic reflex, smooth muscle tone, intestinal secretion and visceral sensitivity. The activation of peripheral 5-HT4 receptors with agonists such as tegaserod has been shown to accelerate gastric emptying and improve symptoms of constipation in animals and humans. However, detailed data on the expression profile and on the localization of this receptor subtype are lacking so far.

Objective: To study the pattern and expression levels of 5-HT4 receptor messenger RNA expression in the gut.

Method: Normal tissue samples were collected from the whole gastrointestinal tract of patients undergoing abdominal surgery and, in addition, of monkeys. We performed a comprehensive analysis of 5-HT4 receptor expression by quantitative reverse transcription-polymerase chain reaction, using human and non-human primate tissues from the oesophagus to the rectum. In addition, the brain and heart of non-human primates were analysed.

Results: Significantly higher levels of 5-HT4 receptor mRNA were measured in the human stomach, duodenum, jejunum, ileum and caecum and also in the corresponding non-human primate gut segments, ranging from 2- to 12-fold compared with the liver. No differences were found between females and males of both human and non-human primates.

Conclusions: These results show 5-HT4 receptor mRNA expression throughout the gastrointestinal tract in humans and primates, and also support the preclinical and clinical findings of 5-HT4 receptors ligands exhibiting multiple effects throughout the gastrointestinal tract.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/01.meg.0000228975.87645.27DOI Listing
September 2006

Palisade endings in extraocular muscles of the monkey are immunoreactive for choline acetyltransferase and vesicular acetylcholine transporter.

Invest Ophthalmol Vis Sci 2005 Dec;46(12):4548-54

Center of Anatomy and Cell Biology, Integrative Morphology Group, Medical University Vienna, Austria.

Purpose: To analyze palisade endings in extraocular muscles (EOMs) of a primate species and to examine our previous findings in cat that palisade endings are putative effector organs.

Methods: Eleven monkeys (Macaca fascicularis) of both sexes, between 4 and 6 years of age were analyzed. Whole EOM myotendons were immunostained with four combinations of triple-fluorescent labeling and examined by confocal laser scanning microscopy. Labeling included antibodies against choline acetyltransferase (ChAT), vesicular acetylcholine transporter (VAChT), neurofilament, and synaptophysin. Muscle fibers were counterstained with phalloidin.

Results: Palisade endings were observed in all monkey EOMs. Nerve fibers extended from the muscle into the tendon and looped back to divide into a terminal arborization (palisade ending) around a single muscle fiber tip. In approximately 30% of the cases, nerve fibers supplying palisade endings often established motor terminals outside the palisade complex. Nerve fibers forming palisade endings were ChAT-neurofilament positive. Axonal branches of palisade endings were ChAT-neurofilament positive as well. All palisade nerve terminals exhibited ChAT-synaptophysin immunoreactivity. Within the palisade complex, palisade nerve terminals exhibited VAChT immunoreactivity. All palisade nerve terminals were VAChT-synaptophysin immunoreactive.

Conclusions: The results confirm that in the monkey, palisade endings contain acetylcholine and are therefore most likely effector organs. Palisade endings are also present in human EOMs and because of their location at the myotendinous junction, these organs are of crucial interest for strabismus surgery.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1167/iovs.05-0726DOI Listing
December 2005

Evaluation of biomarker discovery approaches to detect protein biomarkers of acute renal allograft rejection.

J Proteome Res 2005 Jul-Aug;4(4):1192-9

Novartis Institutes for BioMedical Research, Genome and Proteome Sciences and Transplantation & Immunology Therapeutic Area, CH-4002 Basel, Switzerland.

Management of host responses to allografts by immunosuppressive therapy is the cornerstone of transplantation medicine, but it is still deficient in one important element: biomarkers that are readily accessible and predict the fate of the transplant early, specifically, and reliably. Using a Brown Norway (BN)-to-Lewis rat renal allograft model of kidney transplantation, this study aims at evaluating two proteomic approaches to discover biomarkers for acute rejection: SELDI-MS technology and 2D gel electrophoresis combined with mass spectrometry. Several novel potential serum biomarkers have been identified for follow up. Overall, the conclusion is that apparently at the serum protein level, dramatic changes only occur at a stage where kidney function is already severely affected. Multivariate analysis of serum profiles suggests that there is an ensemble of subtle changes, comprising a proteomic signature of acute rejection at an early stage, a more detailed evaluation of which might provide novel opportunities for the diagnosis of acute rejection. Profiling of the excreted proteins indicates that urine might even present the earliest signs of the rejection process.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/pr050060+DOI Listing
October 2005

Combinations of anti-LFA-1, everolimus, anti-CD40 ligand, and allogeneic bone marrow induce central transplantation tolerance through hemopoietic chimerism, including protection from chronic heart allograft rejection.

J Immunol 2004 Dec;173(11):7025-36

Autoimmunity and Transplantation, Novartis Institutes for Biomedical Research, Basel, Switzerland.

Central transplantation tolerance through hemopoietic chimerism initially requires inhibition of allogeneic stem cell or bone marrow (BM) rejection, as previously achieved in murine models by combinations of T cell costimulation blockade. We have evaluated LFA-1 blockade as part of regimens to support mixed hemopoietic chimerism development upon fully allogeneic BALB/c BM transfer to nonirradiated busulfan-treated B6 recipient mice. Combining anti-LFA-1 with anti-CD40 ligand (CD40L) induced high incidences and levels of stable multilineage hemopoietic chimerism comparable to chimerism achieved with anti-CD40L and everolimus (40-O-(2-hydroxyethyl)-rapamycin) under conditions where neither Ab alone was effective. The combination of anti-LFA-1 with everolimus also resulted in high levels of chimerism, albeit with a lower incidence of stability. Inhibition of acute allograft rejection critically depended on chimerism stability, even if maintained at very low levels around 1%, as was the case for some recipients without busulfan conditioning. Chimerism stability correlated with a significant donor BM-dependent loss of host-derived Vbeta11(+) T cells 3 mo after BM transplantation (Tx). Combinations of anti-CD40L with anti-LFA-1 or everolimus also prevented acute rejection of skin allografts transplanted before established chimerism, albeit not independently of allospecific BMTx. All skin and heart allografts transplanted to stable chimeras 3 and 5 mo after BMTx, respectively, were protected from acute rejection. Moreover, this included prevention of heart allograft vascular intimal thickening ("chronic rejection").
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.173.11.7025DOI Listing
December 2004

Reduced intragraft mRNA expression of matrix metalloproteinases Mmp3, Mmp12, Mmp13 and Adam8, and diminished transplant arteriosclerosis in Ccr5-deficient mice.

Eur J Immunol 2004 Sep;34(9):2568-78

Klinikum der Universität München, Medizinische Poliklinik--Innenstadt, München, Germany.

Experimental and human organ transplant studies suggest an important role for chemokine (C-C-motif) receptor-5 (CCR5) in the development of acute and chronic allograft rejection. Because early transplant damage can predispose allografts to chronic dysfunction, we sought to identify potential pathophysiologic mechanisms leading to allograft damage by using wild-type and Ccr5-deficient mice as recipients of fully MHC-mismatched heart and carotid-artery allografts. Gene expression in rejecting heart allografts was analyzed 2 and 6 days after transplantation using Affymetrix GeneChips. Microarray analysis led to identification of four metalloproteinase genes [matrix metalloproteinase (Mmp)3, Mmp12, Mmp13 and a disintegrin and metalloprotease domain (Adam)8] with significantly diminished intragraft mRNA expression in Ccr5-deficient mice at day 6. Accordingly, allografts from Ccr5-deficient mice showed less tissue remodeling and hence better preservation of the myocardial architecture compared with allografts from wild-type recipients. Moreover, survival of cardiac allografts was significantly increased in Ccr5-deficient mice. Carotid artery allografts from Ccr5-deficient recipients showed better tissue preservation, and significant reduction of neointima formation and CD3+ T cell infiltration. Ccr5 appears to play an important role in transplant-associated arteriosclerosis that may involve metalloproteinase-mediated vessel wall remodeling. We conclude that early tissue remodeling may be a critical feature in the predisposition of allografts to the development of chronic dysfunction.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/eji.200324776DOI Listing
September 2004

Efficacy and safety of ABI793, a novel human anti-human CD154 monoclonal antibody, in cynomolgus monkey renal allotransplantation.

Transplantation 2004 Mar;77(5):717-26

Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland.

Background: Anti-CD154 monoclonal antibodies (mAbs) cause long-term graft survival in preclinical allotransplantation experiments. This is the first report on the efficacy and safety of ABI793, a novel human anti-human CD154 mAb, in Cynomolgus renal transplant recipients.

Methods: ABI793 (human immunoglobulin-G1:kappa) was derived from a hybridoma generated after immunization of human immunoglobulin transgenic mice (HuMAb-Mouse, Medarex Inc., Annandale, NJ). Cynomolgus monkey recipients of major histocompatibility complex-mismatched, life-supporting renal allografts were treated repeatedly with intravenous ABI793 for a 3-month period posttransplantation. Graft function was monitored by serum creatinine, and rejection was confirmed histologically.

Results: ABI793 binds to human, Cynomolgus and Rhesus monkey CD154; it inhibits dose dependently in vitro CD154:CD40 binding and human mixed lymphocyte reaction. ABI793 is comparable to the mouse anti-human CD154 mAbs 5c8 and 24-31 with respect to affinity, inhibitory capacity, and species specificity; however, ABI793 binds to a different CD154 epitope. With 20 mg/kg of ABI793, five of nine recipients showed substantially prolonged graft survival after cessation of treatment, whereas four of nine recipients were killed because of high serum creatinine while still receiving treatment. ABI793 treatment was associated with episodes of severe acute tubular necrosis (which was unrelated to rejection and responded to fluid and diuretic treatment) and a decrease in platelet numbers. Chronic and acute thromboembolic vascular lesions with hemorrhages were observed in the lung and brain of two allograft recipients. None of these side effects were observed in animals that underwent autotransplantation, thus excluding direct toxicity of ABI793.

Conclusions: ABI793 treatment effectively prevents graft rejection in Cynomolgus monkeys. Evidence for rare thromboembolic events, as also previously observed with different anti-human CD154 mAbs, suggests that thromboembolic complications may be a class effect of anti-CD154 mAbs, unrelated to their epitope specificity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/01.tp.0000116563.72763.83DOI Listing
March 2004