Publications by authors named "Grazia M S Mancini"

103 Publications

A standard of care for individuals with PIK3CA-related disorders: An international expert consensus statement.

Clin Genet 2021 Jul 8. Epub 2021 Jul 8.

Centre for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA.

Growth promoting variants in PIK3CA cause a spectrum of developmental disorders, depending on the developmental timing of the mutation and tissues involved. These phenotypically heterogeneous entities have been grouped as PIK3CA-Related Overgrowth Spectrum disorders (PROS). Deep sequencing technologies have facilitated detection of low-level mosaic, often necessitating testing of tissues other than blood. Since clinical management practices vary considerably among healthcare professionals and services across different countries, a consensus on management guidelines is needed. Clinical heterogeneity within this spectrum leads to challenges in establishing management recommendations, which must be based on patient-specific considerations. Moreover, as most of these conditions are rare, affected families may lack access to the medical expertise that is needed to help address the multi-system and often complex medical issues seen with PROS. In March 2019, macrocephaly-capillary malformation (M-CM) patient organizations hosted an expert meeting in Manchester, United Kingdom, to help address these challenges with regards to M-CM syndrome. We have expanded the scope of this project to cover PROS and developed this consensus statement on the preferred approach for managing affected individuals based on our current knowledge.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/cge.14027DOI Listing
July 2021

Pathogenic SPTBN1 variants cause an autosomal dominant neurodevelopmental syndrome.

Nat Genet 2021 Jul 1;53(7):1006-1021. Epub 2021 Jul 1.

McMaster University, Hamilton, Ontario, Canada.

SPTBN1 encodes βII-spectrin, the ubiquitously expressed β-spectrin that forms micrometer-scale networks associated with plasma membranes. Mice deficient in neuronal βII-spectrin have defects in cortical organization, developmental delay and behavioral deficiencies. These phenotypes, while less severe, are observed in haploinsufficient animals, suggesting that individuals carrying heterozygous SPTBN1 variants may also show measurable compromise of neural development and function. Here we identify heterozygous SPTBN1 variants in 29 individuals with developmental, language and motor delays; mild to severe intellectual disability; autistic features; seizures; behavioral and movement abnormalities; hypotonia; and variable dysmorphic facial features. We show that these SPTBN1 variants lead to effects that affect βII-spectrin stability, disrupt binding to key molecular partners, and disturb cytoskeleton organization and dynamics. Our studies define SPTBN1 variants as the genetic basis of a neurodevelopmental syndrome, expand the set of spectrinopathies affecting the brain and underscore the critical role of βII-spectrin in the central nervous system.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-021-00886-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8273149PMC
July 2021

PIGG variant pathogenicity assessment reveals characteristic features within 19 families.

Genet Med 2021 Jun 10. Epub 2021 Jun 10.

Sydney Children's Hospital, Centre for Clinical Genetics, Sydney Children's Hospital, High St, Randwick, UK.

Purpose: Phosphatidylinositol Glycan Anchor Biosynthesis, class G (PIGG) is an ethanolamine phosphate transferase catalyzing the modification of glycosylphosphatidylinositol (GPI). GPI serves as an anchor on the cell membrane for surface proteins called GPI-anchored proteins (GPI-APs). Pathogenic variants in genes involved in the biosynthesis of GPI cause inherited GPI deficiency (IGD), which still needs to be further characterized.

Methods: We describe 22 individuals from 19 unrelated families with biallelic variants in PIGG. We analyzed GPI-AP surface levels on granulocytes and fibroblasts for three and two individuals, respectively. We demonstrated enzymatic activity defects for PIGG variants in vitro in a PIGG/PIGO double knockout system.

Results: Phenotypic analysis of reported individuals reveals shared PIGG deficiency-associated features. All tested GPI-APs were unchanged on granulocytes whereas CD73 level in fibroblasts was decreased. In addition to classic IGD symptoms such as hypotonia, intellectual disability/developmental delay (ID/DD), and seizures, individuals with PIGG variants of null or severely decreased activity showed cerebellar atrophy, various neurological manifestations, and mitochondrial dysfunction, a feature increasingly recognized in IGDs. Individuals with mildly decreased activity showed autism spectrum disorder.

Conclusion: This in vitro system is a useful method to validate the pathogenicity of variants in PIGG and to study PIGG physiological functions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-021-01215-9DOI Listing
June 2021

CSNK2B: A broad spectrum of neurodevelopmental disability and epilepsy severity.

Epilepsia 2021 Jul 26;62(7):e103-e109. Epub 2021 May 26.

Department of Neuropediatrics, APHP Sorbonne University, Trousseau Hospital, Paris, France.

CSNK2B has recently been implicated as a disease gene for neurodevelopmental disability (NDD) and epilepsy. Information about developmental outcomes has been limited by the young age and short follow-up for many of the previously reported cases, and further delineation of the spectrum of associated phenotypes is needed. We present 25 new patients with variants in CSNK2B and refine the associated NDD and epilepsy phenotypes. CSNK2B variants were identified by research or clinical exome sequencing, and investigators from different centers were connected via GeneMatcher. Most individuals had developmental delay and generalized epilepsy with onset in the first 2 years. However, we found a broad spectrum of phenotypic severity, ranging from early normal development with pharmacoresponsive seizures to profound intellectual disability with intractable epilepsy and recurrent refractory status epilepticus. These findings suggest that CSNK2B should be considered in the diagnostic evaluation of patients with a broad range of NDD with treatable or intractable seizures.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/epi.16931DOI Listing
July 2021

Biallelic Variants Are Associated With Mild Lissencephaly and Cerebellar Hypoplasia.

Neurol Genet 2021 Apr 21;7(2):e558. Epub 2021 Jan 21.

Department of Clinical Genetics (D.J.S., R.S., M.W., M.S., G.M.S.M.), ErasmusMC University Medical Center Rotterdam; Department of Child Neurology (M.C.Y.W.) and Department of Radiology (M.H.G.D.), Sophia Children's Hospital, ErasmusMC University Medical Center Rotterdam, the Netherlands; Department of Pediatrics (W.B.D.), University of Washington; Department of Neurology (W.B.D.), University of Washington, Seattle; Center for Integrative Brain Research (W.B.D.), Seattle Children's Research Institute, WA; Department of Human Genetics (W.B.D.), University of Minnesota, Minneapolis; Department of Radiology and Biomedical Imaging (A.J.B.), University of California, San Francisco; and ENCORE Expertise Center for Neurodevelopmental Disorders (M.C.Y.W., M.H.G.D., G.M.S.M.), ErasmusMC University Medical Center, Rotterdam, the Netherlands.

Objective: We aimed to identify pathogenic variants in a girl with epilepsy, developmental delay, cerebellar ataxia, oral motor difficulty, and structural brain abnormalities with the use of whole-exome sequencing.

Methods: Whole-exome trio analysis and molecular functional studies were performed in addition to the clinical findings and neuroimaging studies.

Results: Brain MRI showed mild pachygyria, hypoplasia of the cerebellar vermis, and abnormal foliation of the cerebellar vermis, suspected for a variant in one of the genes of the Reelin pathway. Trio whole-exome sequencing and additional functional studies were performed to identify the pathogenic variants. Trio whole-exome sequencing revealed compound heterozygous splice variants in , both affecting the highly conserved functional phosphotyrosine-binding domain. Expression studies in patient-derived cells showed loss of normal transcripts, confirming pathogenicity.

Conclusions: We conclude that these variants are very likely causally related to the cerebral phenotype and propose to consider loss-of-function variants in patients with RELN-like cortical malformations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1212/NXG.0000000000000558DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7830234PMC
April 2021

Heterozygous ANKRD17 loss-of-function variants cause a syndrome with intellectual disability, speech delay, and dysmorphism.

Am J Hum Genet 2021 06 27;108(6):1138-1150. Epub 2021 Apr 27.

Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA.

ANKRD17 is an ankyrin repeat-containing protein thought to play a role in cell cycle progression, whose ortholog in Drosophila functions in the Hippo pathway as a co-factor of Yorkie. Here, we delineate a neurodevelopmental disorder caused by de novo heterozygous ANKRD17 variants. The mutational spectrum of this cohort of 34 individuals from 32 families is highly suggestive of haploinsufficiency as the underlying mechanism of disease, with 21 truncating or essential splice site variants, 9 missense variants, 1 in-frame insertion-deletion, and 1 microdeletion (1.16 Mb). Consequently, our data indicate that loss of ANKRD17 is likely the main cause of phenotypes previously associated with large multi-gene chromosomal aberrations of the 4q13.3 region. Protein modeling suggests that most of the missense variants disrupt the stability of the ankyrin repeats through alteration of core structural residues. The major phenotypic characteristic of our cohort is a variable degree of developmental delay/intellectual disability, particularly affecting speech, while additional features include growth failure, feeding difficulties, non-specific MRI abnormalities, epilepsy and/or abnormal EEG, predisposition to recurrent infections (mostly bacterial), ophthalmological abnormalities, gait/balance disturbance, and joint hypermobility. Moreover, many individuals shared similar dysmorphic facial features. Analysis of single-cell RNA-seq data from the developing human telencephalon indicated ANKRD17 expression at multiple stages of neurogenesis, adding further evidence to the assertion that damaging ANKRD17 variants cause a neurodevelopmental disorder.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2021.04.007DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8206162PMC
June 2021

Missense variants in DPYSL5 cause a neurodevelopmental disorder with corpus callosum agenesis and cerebellar abnormalities.

Am J Hum Genet 2021 05 23;108(5):951-961. Epub 2021 Apr 23.

Service de Génétique, Centre Hospitalier Universitaire, 86021 Poitiers, France; Equipe d'Accueil 3808, Université de Poitiers, 86034 Poitiers, France.

The collapsin response mediator protein (CRMP) family proteins are intracellular mediators of neurotrophic factors regulating neurite structure/spine formation and are essential for dendrite patterning and directional axonal pathfinding during brain developmental processes. Among this family, CRMP5/DPYSL5 plays a significant role in neuronal migration, axonal guidance, dendrite outgrowth, and synapse formation by interacting with microtubules. Here, we report the identification of missense mutations in DPYSL5 in nine individuals with brain malformations, including corpus callosum agenesis and/or posterior fossa abnormalities, associated with variable degrees of intellectual disability. A recurrent de novo p.Glu41Lys variant was found in eight unrelated patients, and a p.Gly47Arg variant was identified in one individual from the first family reported with Ritscher-Schinzel syndrome. Functional analyses of the two missense mutations revealed impaired dendritic outgrowth processes in young developing hippocampal primary neuronal cultures. We further demonstrated that these mutations, both located in the same loop on the surface of DPYSL5 monomers and oligomers, reduced the interaction of DPYSL5 with neuronal cytoskeleton-associated proteins MAP2 and βIII-tubulin. Our findings collectively indicate that the p.Glu41Lys and p.Gly47Arg variants impair DPYSL5 function on dendritic outgrowth regulation by preventing the formation of the ternary complex with MAP2 and βIII-tubulin, ultimately leading to abnormal brain development. This study adds DPYSL5 to the list of genes implicated in brain malformation and in neurodevelopmental disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2021.04.004DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8206156PMC
May 2021

ATP1A2- and ATP1A3-associated early profound epileptic encephalopathy and polymicrogyria.

Brain 2021 Jun;144(5):1435-1450

Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence, Florence, Italy.

Constitutional heterozygous mutations of ATP1A2 and ATP1A3, encoding for two distinct isoforms of the Na+/K+-ATPase (NKA) alpha-subunit, have been associated with familial hemiplegic migraine (ATP1A2), alternating hemiplegia of childhood (ATP1A2/A3), rapid-onset dystonia-parkinsonism, cerebellar ataxia-areflexia-progressive optic atrophy, and relapsing encephalopathy with cerebellar ataxia (all ATP1A3). A few reports have described single individuals with heterozygous mutations of ATP1A2/A3 associated with severe childhood epilepsies. Early lethal hydrops fetalis, arthrogryposis, microcephaly, and polymicrogyria have been associated with homozygous truncating mutations in ATP1A2. We investigated the genetic causes of developmental and epileptic encephalopathies variably associated with malformations of cortical development in a large cohort and identified 22 patients with de novo or inherited heterozygous ATP1A2/A3 mutations. We characterized clinical, neuroimaging and neuropathological findings, performed in silico and in vitro assays of the mutations' effects on the NKA-pump function, and studied genotype-phenotype correlations. Twenty-two patients harboured 19 distinct heterozygous mutations of ATP1A2 (six patients, five mutations) and ATP1A3 (16 patients, 14 mutations, including a mosaic individual). Polymicrogyria occurred in 10 (45%) patients, showing a mainly bilateral perisylvian pattern. Most patients manifested early, often neonatal, onset seizures with a multifocal or migrating pattern. A distinctive, 'profound' phenotype, featuring polymicrogyria or progressive brain atrophy and epilepsy, resulted in early lethality in seven patients (32%). In silico evaluation predicted all mutations to be detrimental. We tested 14 mutations in transfected COS-1 cells and demonstrated impaired NKA-pump activity, consistent with severe loss of function. Genotype-phenotype analysis suggested a link between the most severe phenotypes and lack of COS-1 cell survival, and also revealed a wide continuum of severity distributed across mutations that variably impair NKA-pump activity. We performed neuropathological analysis of the whole brain in two individuals with polymicrogyria respectively related to a heterozygous ATP1A3 mutation and a homozygous ATP1A2 mutation and found close similarities with findings suggesting a mainly neural pathogenesis, compounded by vascular and leptomeningeal abnormalities. Combining our report with other studies, we estimate that ∼5% of mutations in ATP1A2 and 12% in ATP1A3 can be associated with the severe and novel phenotypes that we describe here. Notably, a few of these mutations were associated with more than one phenotype. These findings assign novel, 'profound' and early lethal phenotypes of developmental and epileptic encephalopathies and polymicrogyria to the phenotypic spectrum associated with heterozygous ATP1A2/A3 mutations and indicate that severely impaired NKA pump function can disrupt brain morphogenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/brain/awab052DOI Listing
June 2021

Histone H3.3 beyond cancer: Germline mutations in cause a previously unidentified neurodegenerative disorder in 46 patients.

Sci Adv 2020 Dec 2;6(49). Epub 2020 Dec 2.

Institut für Neurogenomik, Helmholtz Zentrum München, Munich, Germany.

Although somatic mutations in Histone 3.3 (H3.3) are well-studied drivers of oncogenesis, the role of germline mutations remains unreported. We analyze 46 patients bearing de novo germline mutations in histone 3 family 3A () or with progressive neurologic dysfunction and congenital anomalies without malignancies. Molecular modeling of all 37 variants demonstrated clear disruptions in interactions with DNA, other histones, and histone chaperone proteins. Patient histone posttranslational modifications (PTMs) analysis revealed notably aberrant local PTM patterns distinct from the somatic lysine mutations that cause global PTM dysregulation. RNA sequencing on patient cells demonstrated up-regulated gene expression related to mitosis and cell division, and cellular assays confirmed an increased proliferative capacity. A zebrafish model showed craniofacial anomalies and a defect in Foxd3-derived glia. These data suggest that the mechanism of germline mutations are distinct from cancer-associated somatic histone mutations but may converge on control of cell proliferation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/sciadv.abc9207DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7821880PMC
December 2020

The potential diagnostic yield of whole exome sequencing in pregnancies complicated by fetal ultrasound anomalies.

Acta Obstet Gynecol Scand 2021 06 28;100(6):1106-1115. Epub 2020 Dec 28.

Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands.

Introduction: The aim of this retrospective cohort study was to determine the potential diagnostic yield of prenatal whole exome sequencing in fetuses with structural anomalies on expert ultrasound scans and normal chromosomal microarray results.

Material And Methods: In the period 2013-2016, 391 pregnant women with fetal ultrasound anomalies who received normal chromosomal microarray results, were referred for additional genetic counseling and opted for additional molecular testing pre- and/or postnatally. Most of the couples received only a targeted molecular test and in 159 cases (40.7%) whole exome sequencing (broad gene panels or open exome) was performed. The results of these molecular tests were evaluated retrospectively, regardless of the time of the genetic diagnosis (prenatal or postnatal).

Results: In 76 of 391 fetuses (19.4%, 95% CI 15.8%-23.6%) molecular testing provided a genetic diagnosis with identification of (likely) pathogenic variants. In the majority of cases (91.1%, 73/76) the (likely) pathogenic variant would be detected by prenatal whole exome sequencing analysis.

Conclusions: Our retrospective cohort study shows that prenatal whole exome sequencing, if offered by a clinical geneticist, in addition to chromosomal microarray, would notably increase the diagnostic yield in fetuses with ultrasound anomalies and would allow early diagnosis of a genetic disorder irrespective of the (incomplete) fetal phenotype.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/aogs.14053DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8247008PMC
June 2021

Goldberg-Shprintzen syndrome is determined by the absence, or reduced expression levels, of KIFBP.

Hum Mutat 2020 11 16;41(11):1906-1917. Epub 2020 Sep 16.

Department of Clinical Genetics, Erasmus University Medical Centre, Rotterdam, The Netherlands.

Goldberg-Shprintzen syndrome (GOSHS) is caused by loss of function variants in the kinesin binding protein gene (KIFBP). However, the phenotypic range of this syndrome is wide, indicating that other factors may play a role. To date, 37 patients with GOSHS have been reported. Here, we document nine new patients with variants in KIFBP: seven with nonsense variants and two with missense variants. To our knowledge, this is the first time that missense variants have been reported in GOSHS. We functionally investigated the effect of the variants identified, in an attempt to find a genotype-phenotype correlation. We also determined whether common Hirschsprung disease (HSCR)-associated single nucleotide polymorphisms (SNPs), could explain the presence of HSCR in GOSHS. Our results showed that the missense variants led to reduced expression of KIFBP, while the truncating variants resulted in lack of protein. However, no correlation was found between the severity of GOSHS and the location of the variants. We were also unable to find a correlation between common HSCR-associated SNPs, and HSCR development in GOSHS. In conclusion, we show that reduced, as well as lack of KIFBP expression can lead to GOSHS, and our results suggest that a threshold expression of KIFBP may modulate phenotypic variability of the disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/humu.24097DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7693350PMC
November 2020

International consensus recommendations on the diagnostic work-up for malformations of cortical development.

Nat Rev Neurol 2020 Nov 7;16(11):618-635. Epub 2020 Sep 7.

Institute for Clinical Genetics, TU Dresden, Dresden, Germany.

Malformations of cortical development (MCDs) are neurodevelopmental disorders that result from abnormal development of the cerebral cortex in utero. MCDs place a substantial burden on affected individuals, their families and societies worldwide, as these individuals can experience lifelong drug-resistant epilepsy, cerebral palsy, feeding difficulties, intellectual disability and other neurological and behavioural anomalies. The diagnostic pathway for MCDs is complex owing to wide variations in presentation and aetiology, thereby hampering timely and adequate management. In this article, the international MCD network Neuro-MIG provides consensus recommendations to aid both expert and non-expert clinicians in the diagnostic work-up of MCDs with the aim of improving patient management worldwide. We reviewed the literature on clinical presentation, aetiology and diagnostic approaches for the main MCD subtypes and collected data on current practices and recommendations from clinicians and diagnostic laboratories within Neuro-MIG. We reached consensus by 42 professionals from 20 countries, using expert discussions and a Delphi consensus process. We present a diagnostic workflow that can be applied to any individual with MCD and a comprehensive list of MCD-related genes with their associated phenotypes. The workflow is designed to maximize the diagnostic yield and increase the number of patients receiving personalized care and counselling on prognosis and recurrence risk.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41582-020-0395-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7790753PMC
November 2020

Definitions and classification of malformations of cortical development: practical guidelines.

Brain 2020 10;143(10):2874-2894

Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.

Malformations of cortical development are a group of rare disorders commonly manifesting with developmental delay, cerebral palsy or seizures. The neurological outcome is extremely variable depending on the type, extent and severity of the malformation and the involved genetic pathways of brain development. Neuroimaging plays an essential role in the diagnosis of these malformations, but several issues regarding malformations of cortical development definitions and classification remain unclear. The purpose of this consensus statement is to provide standardized malformations of cortical development terminology and classification for neuroradiological pattern interpretation. A committee of international experts in paediatric neuroradiology prepared systematic literature reviews and formulated neuroimaging recommendations in collaboration with geneticists, paediatric neurologists and pathologists during consensus meetings in the context of the European Network Neuro-MIG initiative on Brain Malformations (https://www.neuro-mig.org/). Malformations of cortical development neuroimaging features and practical recommendations are provided to aid both expert and non-expert radiologists and neurologists who may encounter patients with malformations of cortical development in their practice, with the aim of improving malformations of cortical development diagnosis and imaging interpretation worldwide.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/brain/awaa174DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7586092PMC
October 2020

Human RAD50 deficiency: Confirmation of a distinctive phenotype.

Am J Med Genet A 2020 06 25;182(6):1378-1386. Epub 2020 Mar 25.

Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands.

DNA double-strand breaks (DSBs) are highly toxic DNA lesions that can lead to chromosomal instability, loss of genes and cancer. The MRE11/RAD50/NBN (MRN) complex is keystone involved in signaling processes inducing the repair of DSB by, for example, in activating pathways leading to homologous recombination repair and nonhomologous end joining. Additionally, the MRN complex also plays an important role in the maintenance of telomeres and can act as a stabilizer at replication forks. Mutations in NBN and MRE11 are associated with Nijmegen breakage syndrome (NBS) and ataxia telangiectasia (AT)-like disorder, respectively. So far, only one single patient with biallelic loss of function variants in RAD50 has been reported presenting with features classified as NBS-like disorder. Here, we report a long-term follow-up of an unrelated patient with facial dysmorphisms, microcephaly, skeletal features, and short stature who is homozygous for a novel variant in RAD50. We could show that this variant, c.2524G > A in exon 15 of the RAD50 gene, induces aberrant splicing of RAD50 mRNA mainly leading to premature protein truncation and thereby, most likely, to loss of RAD50 function. Using patient-derived primary fibroblasts, we could show abnormal radioresistant DNA synthesis confirming pathogenicity of the identified variant. Immunoblotting experiments showed strongly reduced protein levels of RAD50 in the patient-derived fibroblasts and provided evidence for a markedly reduced radiation-induced AT-mutated signaling. Comparison with the previously reported case and with patients presenting with NBS confirms that RAD50 mutations lead to a similar, but distinctive phenotype.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.61570DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7318339PMC
June 2020

TMX2 Is a Crucial Regulator of Cellular Redox State, and Its Dysfunction Causes Severe Brain Developmental Abnormalities.

Am J Hum Genet 2019 12 14;105(6):1126-1147. Epub 2019 Nov 14.

Department of Neuromuscular Disorders, University College London Institute of Neurology, Queen Square, London WC1N 3BG, UK.

The redox state of the neural progenitors regulates physiological processes such as neuronal differentiation and dendritic and axonal growth. The relevance of endoplasmic reticulum (ER)-associated oxidoreductases in these processes is largely unexplored. We describe a severe neurological disorder caused by bi-allelic loss-of-function variants in thioredoxin (TRX)-related transmembrane-2 (TMX2); these variants were detected by exome sequencing in 14 affected individuals from ten unrelated families presenting with congenital microcephaly, cortical polymicrogyria, and other migration disorders. TMX2 encodes one of the five TMX proteins of the protein disulfide isomerase family, hitherto not linked to human developmental brain disease. Our mechanistic studies on protein function show that TMX2 localizes to the ER mitochondria-associated membranes (MAMs), is involved in posttranslational modification and protein folding, and undergoes physical interaction with the MAM-associated and ER folding chaperone calnexin and ER calcium pump SERCA2. These interactions are functionally relevant because TMX2-deficient fibroblasts show decreased mitochondrial respiratory reserve capacity and compensatory increased glycolytic activity. Intriguingly, under basal conditions TMX2 occurs in both reduced and oxidized monomeric form, while it forms a stable dimer under treatment with hydrogen peroxide, recently recognized as a signaling molecule in neural morphogenesis and axonal pathfinding. Exogenous expression of the pathogenic TMX2 variants or of variants with an in vitro mutagenized TRX domain induces a constitutive TMX2 polymerization, mimicking an increased oxidative state. Altogether these data uncover TMX2 as a sensor in the MAM-regulated redox signaling pathway and identify it as a key adaptive regulator of neuronal proliferation, migration, and organization in the developing brain.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2019.10.009DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6904804PMC
December 2019

EML1-associated brain overgrowth syndrome with ribbon-like heterotopia.

Am J Med Genet C Semin Med Genet 2019 12 11;181(4):627-637. Epub 2019 Nov 11.

Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands.

EML1 encodes the protein Echinoderm microtubule-associated protein-like 1 or EMAP-1 that binds to the microtubule complex. Mutations in this gene resulting in complex brain malformations have only recently been published with limited clinical descriptions. We provide further clinical and imaging details on three previously published families, and describe two novel unrelated individuals with a homozygous partial EML1 deletion and a homozygous missense variant c.760G>A, p.(Val254Met), respectively. From review of the clinical and imaging data of eight individuals from five families with biallelic EML1 variants, a very consistent imaging phenotype emerges. The clinical syndrome is characterized by mainly neurological features including severe developmental delay, drug-resistant seizures and visual impairment. On brain imaging there is megalencephaly with a characteristic ribbon-like subcortical heterotopia combined with partial or complete callosal agenesis and an overlying polymicrogyria-like cortical malformation. Several of its features can be recognized on prenatal imaging especially the abnormaly formed lateral ventricles, hydrocephalus (in half of the cases) and suspicion of a neuronal migration disorder. In conclusion, biallelic EML1 disease-causing variants cause a highly specific pattern of congenital brain malformations, severe developmental delay, seizures and visual impairment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.c.31751DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6916563PMC
December 2019

Bi-allelic Loss of Human APC2, Encoding Adenomatous Polyposis Coli Protein 2, Leads to Lissencephaly, Subcortical Heterotopia, and Global Developmental Delay.

Am J Hum Genet 2019 10;105(4):844-853

Department of Neurosciences, Howard Hughes Medical Institute, University of California, San Diego, CA 92093, USA; Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA 92123, USA. Electronic address:

Lissencephaly is a severe brain malformation in which failure of neuronal migration results in agyria or pachygyria and in which the brain surface appears unusually smooth. It is often associated with microcephaly, profound intellectual disability, epilepsy, and impaired motor abilities. Twenty-two genes are associated with lissencephaly, accounting for approximately 80% of disease. Here we report on 12 individuals with a unique form of lissencephaly; these individuals come from eight unrelated families and have bi-allelic mutations in APC2, encoding adenomatous polyposis coli protein 2. Brain imaging studies demonstrate extensive posterior predominant lissencephaly, similar to PAFAH1B1-associated lissencephaly, as well as co-occurrence of subcortical heterotopia posterior to the caudate nuclei, "ribbon-like" heterotopia in the posterior frontal region, and dysplastic in-folding of the mesial occipital cortex. The established role of APC2 in integrating the actin and microtubule cytoskeletons to mediate cellular morphological changes suggests shared function with other lissencephaly-encoded cytoskeletal proteins such as α-N-catenin (CTNNA2) and platelet-activating factor acetylhydrolase 1b regulatory subunit 1 (PAFAH1B1, also known as LIS1). Our findings identify APC2 as a radiographically distinguishable recessive form of lissencephaly.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2019.08.013DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6817548PMC
October 2019

Disruptive variants of associate with autism and interfere with neuronal development and synaptic transmission.

Sci Adv 2019 09 25;5(9):eaax2166. Epub 2019 Sep 25.

Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.

RNA binding proteins are key players in posttranscriptional regulation and have been implicated in neurodevelopmental and neuropsychiatric disorders. Here, we report a significant burden of heterozygous, likely gene-disrupting variants in (encoding a highly constrained RNA binding protein) among patients with autism and related neurodevelopmental disabilities. Analysis of 17 patients identifies common phenotypes including autism, intellectual disability, language and motor delay, seizures, macrocephaly, and variable ocular abnormalities. HITS-CLIP revealed that Csde1-binding targets are enriched in autism-associated gene sets, especially FMRP targets, and in neuronal development and synaptic plasticity-related pathways. Csde1 knockdown in primary mouse cortical neurons leads to an overgrowth of the neurites and abnormal dendritic spine morphology/synapse formation and impaired synaptic transmission, whereas mutant and knockdown experiments in result in defects in synapse growth and synaptic transmission. Our study defines a new autism-related syndrome and highlights the functional role of CSDE1 in synapse development and synaptic transmission.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/sciadv.aax2166DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6760934PMC
September 2019

Loss of SMPD4 Causes a Developmental Disorder Characterized by Microcephaly and Congenital Arthrogryposis.

Am J Hum Genet 2019 10 5;105(4):689-705. Epub 2019 Sep 5.

Department of Human Genetics, Division of Developmental Biology Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7016, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati, College of Medicine, 3333 Burnet Ave., ML 4006, Cincinnati, OH 45229, USA.

Sphingomyelinases generate ceramide from sphingomyelin as a second messenger in intracellular signaling pathways involved in cell proliferation, differentiation, or apoptosis. Children from 12 unrelated families presented with microcephaly, simplified gyral pattern of the cortex, hypomyelination, cerebellar hypoplasia, congenital arthrogryposis, and early fetal/postnatal demise. Genomic analysis revealed bi-allelic loss-of-function variants in SMPD4, coding for the neutral sphingomyelinase-3 (nSMase-3/SMPD4). Overexpression of human Myc-tagged SMPD4 showed localization both to the outer nuclear envelope and the ER and additionally revealed interactions with several nuclear pore complex proteins by proteomics analysis. Fibroblasts from affected individuals showed ER cisternae abnormalities, suspected for increased autophagy, and were more susceptible to apoptosis under stress conditions, while treatment with siSMPD4 caused delayed cell cycle progression. Our data show that SMPD4 links homeostasis of membrane sphingolipids to cell fate by regulating the cross-talk between the ER and the outer nuclear envelope, while its loss reveals a pathogenic mechanism in microcephaly.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2019.08.006DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6817560PMC
October 2019

Subcortical heterotopic gray matter brain malformations: Classification study of 107 individuals.

Neurology 2019 10 4;93(14):e1360-e1373. Epub 2019 Sep 4.

From the Department of Clinical Genetics (R.O., G.M.S.M.), Erasmus MC University Medical Center, Rotterdam; Department of Genetics (R.O.), University Medical Center Utrecht, the Netherlands; Departments of Radiology and Biomedical Imaging and Neurology and Neurology (A.J.B.), University of California, San Francisco; Department of Neuroscience, Pharmacology and Child Health (R.G.), Children's Hospital A. Meyer and University of Florence, Italy; Center for Integrative Brain Research (W.B.D.), Seattle Children's Research Institute; and Departments of Pediatrics and Neurology (W.B.D.), University of Washington, Seattle.

Objective: To better evaluate the imaging spectrum of subcortical heterotopic gray matter brain malformations (subcortical heterotopia [SUBH]), we systematically reviewed neuroimaging and clinical data of 107 affected individuals.

Methods: SUBH is defined as heterotopic gray matter, located within the white matter between the cortex and lateral ventricles. Four large brain malformation databases were searched for individuals with these malformations; data on imaging, clinical outcomes, and results of molecular testing were systematically reviewed and integrated with all previously published subtypes to create a single classification system.

Results: Review of the databases revealed 107 patients with SUBH, the large majority scanned during childhood (84%), including more than half before 4 years (59%). Although most individuals had cognitive or motor disability, 19% had normal development. Epilepsy was documented in 69%. Additional brain malformations were common and included abnormalities of the corpus callosum (65/102 [64%]), and, often, brainstem or cerebellum (47/106 [44%]). Extent of the heterotopic gray matter brain malformations (unilateral or bilateral) did not influence the presence or age at onset of seizures. Although genetic testing was not systematically performed in this group, the sporadic occurrence and frequent asymmetry suggests either postzygotic mutations or prenatal disruptive events. Several rare, bilateral forms are caused by mutations in genes associated with cell proliferation and polarity (, , , ).

Conclusion: This study reveals a broad clinical and imaging spectrum of heterotopic malformations and provides a framework for their classification.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1212/WNL.0000000000008200DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6814414PMC
October 2019

Late-onset phenotype associated with a homozygous GJC2 missense mutation in a Turkish family.

Parkinsonism Relat Disord 2019 09 31;66:228-231. Epub 2019 Jul 31.

Erasmus MC, University Medical Center, Rotterdam, the Netherlands, Department of Clinical Genetics. Electronic address:

Objective: Recessive mutations in the Gap Junction Protein Gamma 2 (GJC2) gene cause Pelizaeus-Merzbacher-like disease type 1, a severe infantile-onset hypomyelinating leukodystrophy. Milder, late-onset phenotypes including complicated spastic paraplegia in one family (SPG44), and mild tremor in one case, were reported associated to GJC2 homozygous missense mutations. Here, we report a new family with two siblings carrying a different homozygous GJC2 mutation, presenting with late-onset ataxic and pyramidal disturbances, and parkinsonism in one of them.

Methods: Two affected siblings were studied by neurological examination and brain MRI. Genetic analyses included genome-wide homozygosity mapping in both siblings, and whole exome sequencing in one sib. The resulting candidate gene variant was validated by Sanger sequencing.

Results: The affected siblings share a novel homozygous GJC2 missense mutation (c.820G>C, p.Val274Leu), predicted as pathogenic by all used in-silico tools. Brain MRI showed hyperintense signal in T2-weighted images in the internal capsule and subcortical and periventricular white matter, consistent with hypomyelination.

Conclusions: Our findings confirm and further expand the late-onset phenotypes of GJC2 mutations, to include prominent ataxia, pyramidal disturbances and mild parkinsonism, and confirm the distinctive associated MRI pattern.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.parkreldis.2019.07.033DOI Listing
September 2019

Mutations in the Heterotopia Gene Eml1/EML1 Severely Disrupt the Formation of Primary Cilia.

Cell Rep 2019 08;28(6):1596-1611.e10

INSERM U 1270, Paris, France; Sorbonne University, UMR-S 1270, 75005 Paris, France; Institut du Fer à Moulin, Paris, France. Electronic address:

Apical radial glia (aRGs) are predominant progenitors during corticogenesis. Perturbing their function leads to cortical malformations, including subcortical heterotopia (SH), characterized by the presence of neurons below the cortex. EML1/Eml1 mutations lead to SH in patients, as well as to heterotopic cortex (HeCo) mutant mice. In HeCo mice, some aRGs are abnormally positioned away from the ventricular zone (VZ). Thus, unraveling EML1/Eml1 function will clarify mechanisms maintaining aRGs in the VZ. We pinpoint an unknown EML1/Eml1 function in primary cilium formation. In HeCo aRGs, cilia are shorter, less numerous, and often found aberrantly oriented within vesicles. Patient fibroblasts and human cortical progenitors show similar defects. EML1 interacts with RPGRIP1L, a ciliary protein, and RPGRIP1L mutations were revealed in a heterotopia patient. We also identify Golgi apparatus abnormalities in EML1/Eml1 mutant cells, potentially upstream of the cilia phenotype. We thus reveal primary cilia mechanisms impacting aRG dynamics in physiological and pathological conditions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2019.06.096DOI Listing
August 2019

De novo loss-of-function KCNMA1 variants are associated with a new multiple malformation syndrome and a broad spectrum of developmental and neurological phenotypes.

Hum Mol Genet 2019 09;28(17):2937-2951

Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China.

KCNMA1 encodes the large-conductance Ca2+- and voltage-activated K+ (BK) potassium channel α-subunit, and pathogenic gain-of-function variants in this gene have been associated with a dominant form of generalized epilepsy and paroxysmal dyskinesia. Here, we genetically and functionally characterize eight novel loss-of-function (LoF) variants of KCNMA1. Genome or exome sequencing and the participation in the international Matchmaker Exchange effort allowed for the identification of novel KCNMA1 variants. Patch clamping was used to assess functionality of mutant BK channels. The KCNMA1 variants p.(Ser351Tyr), p.(Gly356Arg), p.(Gly375Arg), p.(Asn449fs) and p.(Ile663Val) abolished the BK current, whereas p.(Cys413Tyr) and p.(Pro805Leu) reduced the BK current amplitude and shifted the activation curves toward positive potentials. The p.(Asp984Asn) variant reduced the current amplitude without affecting kinetics. A phenotypic analysis of the patients carrying the recurrent p.(Gly375Arg) de novo missense LoF variant revealed a novel syndromic neurodevelopmental disorder associated with severe developmental delay, visceral and cardiac malformations, connective tissue presentations with arterial involvement, bone dysplasia and characteristic dysmorphic features. Patients with other LoF variants presented with neurological and developmental symptoms including developmental delay, intellectual disability, ataxia, axial hypotonia, cerebral atrophy and speech delay/apraxia/dysarthria. Therefore, LoF KCNMA1 variants are associated with a new syndrome characterized by a broad spectrum of neurological phenotypes and developmental disorders. LoF variants of KCNMA1 cause a new syndrome distinctly different from gain-of-function variants in the same gene.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddz117DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6735855PMC
September 2019

Phenotypic and biochemical analysis of an international cohort of individuals with variants in NAA10 and NAA15.

Hum Mol Genet 2019 09;28(17):2900-2919

Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA.

N-alpha-acetylation is one of the most common co-translational protein modifications in humans and is essential for normal cell function. NAA10 encodes for the enzyme NAA10, which is the catalytic subunit in the N-terminal acetyltransferase A (NatA) complex. The auxiliary and regulatory subunits of the NatA complex are NAA15 and Huntington-interacting protein (HYPK), respectively. Through a genotype-first approach with exome sequencing, we identified and phenotypically characterized 30 individuals from 30 unrelated families with 17 different de novo or inherited, dominantly acting missense variants in NAA10 or NAA15. Clinical features of affected individuals include variable levels of intellectual disability, delayed speech and motor milestones and autism spectrum disorder. Additionally, some subjects present with mild craniofacial dysmorphology, congenital cardiac anomalies and seizures. One of the individuals is an 11-year-old boy with a frameshift variant in exon 7 of NAA10, who presents most notably with microphthalmia, which confirms a prior finding with a single family with Lenz microphthalmia syndrome. Biochemical analyses of variants as part of the human NatA complex, as well as enzymatic analyses with and without the HYPK regulatory subunit, help to explain some of the phenotypic differences seen among the different variants.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddz111DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6736318PMC
September 2019

Genetic variants in the KDM6B gene are associated with neurodevelopmental delays and dysmorphic features.

Am J Med Genet A 2019 07 23;179(7):1276-1286. Epub 2019 May 23.

Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands.

Lysine-specific demethylase 6B (KDM6B) demethylates trimethylated lysine-27 on histone H3. The methylation and demethylation of histone proteins affects gene expression during development. Pathogenic alterations in histone lysine methylation and demethylation genes have been associated with multiple neurodevelopmental disorders. We have identified a number of de novo alterations in the KDM6B gene via whole exome sequencing (WES) in a cohort of 12 unrelated patients with developmental delay, intellectual disability, dysmorphic facial features, and other clinical findings. Our findings will allow for further investigation in to the role of the KDM6B gene in human neurodevelopmental disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.61173DOI Listing
July 2019

Heterogeneous clinical phenotypes and cerebral malformations reflected by rotatin cellular dynamics.

Brain 2019 04;142(4):867-884

Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands.

Recessive mutations in RTTN, encoding the protein rotatin, were originally identified as cause of polymicrogyria, a cortical malformation. With time, a wide variety of other brain malformations has been ascribed to RTTN mutations, including primary microcephaly. Rotatin is a centrosomal protein possibly involved in centriolar elongation and ciliogenesis. However, the function of rotatin in brain development is largely unknown and the molecular disease mechanism underlying cortical malformations has not yet been elucidated. We performed both clinical and cell biological studies, aimed at clarifying rotatin function and pathogenesis. Review of the 23 published and five unpublished clinical cases and genomic mutations, including the effect of novel deep intronic pathogenic mutations on RTTN transcripts, allowed us to extrapolate the core phenotype, consisting of intellectual disability, short stature, microcephaly, lissencephaly, periventricular heterotopia, polymicrogyria and other malformations. We show that the severity of the phenotype is related to residual function of the protein, not only the level of mRNA expression. Skin fibroblasts from eight affected individuals were studied by high resolution immunomicroscopy and flow cytometry, in parallel with in vitro expression of RTTN in HEK293T cells. We demonstrate that rotatin regulates different phases of the cell cycle and is mislocalized in affected individuals. Mutant cells showed consistent and severe mitotic failure with centrosome amplification and multipolar spindle formation, leading to aneuploidy and apoptosis, which could relate to depletion of neuronal progenitors often observed in microcephaly. We confirmed the role of rotatin in functional and structural maintenance of primary cilia and determined that the protein localized not only to the basal body, but also to the axoneme, proving the functional interconnectivity between ciliogenesis and cell cycle progression. Proteomics analysis of both native and exogenous rotatin uncovered that rotatin interacts with the neuronal (non-muscle) myosin heavy chain subunits, motors of nucleokinesis during neuronal migration, and in human induced pluripotent stem cell-derived bipolar mature neurons rotatin localizes at the centrosome in the leading edge. This illustrates the role of rotatin in neuronal migration. These different functions of rotatin explain why RTTN mutations can lead to heterogeneous cerebral malformations, both related to proliferation and migration defects.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/brain/awz045DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6439326PMC
April 2019

Cysteinyl-tRNA Synthetase Mutations Cause a Multi-System, Recessive Disease That Includes Microcephaly, Developmental Delay, and Brittle Hair and Nails.

Am J Hum Genet 2019 03 26;104(3):520-529. Epub 2019 Feb 26.

Department of Clinical Genetics, Erasmus Medical Center, University Medical Center, 3015 GD Rotterdam, the Netherlands.

Aminoacyl-tRNA synthetases (ARSs) are essential enzymes responsible for charging tRNA molecules with cognate amino acids. Consistent with the essential function and ubiquitous expression of ARSs, mutations in 32 of the 37 ARS-encoding loci cause severe, early-onset recessive phenotypes. Previous genetic and functional data suggest a loss-of-function mechanism; however, our understanding of the allelic and locus heterogeneity of ARS-related disease is incomplete. Cysteinyl-tRNA synthetase (CARS) encodes the enzyme that charges tRNA with cysteine in the cytoplasm. To date, CARS variants have not been implicated in any human disease phenotype. Here, we report on four subjects from three families with complex syndromes that include microcephaly, developmental delay, and brittle hair and nails. Each affected person carries bi-allelic CARS variants: one individual is compound heterozygous for c.1138C>T (p.Gln380) and c.1022G>A (p.Arg341His), two related individuals are compound heterozygous for c.1076C>T (p.Ser359Leu) and c.1199T>A (p.Leu400Gln), and one individual is homozygous for c.2061dup (p.Ser688Glnfs2). Measurement of protein abundance, yeast complementation assays, and assessments of tRNA charging indicate that each CARS variant causes a loss-of-function effect. Compared to subjects with previously reported ARS-related diseases, individuals with bi-allelic CARS variants are unique in presenting with a brittle-hair-and-nail phenotype, which most likely reflects the high cysteine content in human keratins. In sum, our efforts implicate CARS variants in human inherited disease, expand the locus and clinical heterogeneity of ARS-related clinical phenotypes, and further support impaired tRNA charging as the primary mechanism of recessive ARS-related disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2019.01.006DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6407526PMC
March 2019

Correction: The ARID1B spectrum in 143 patients: from nonsyndromic intellectual disability to Coffin-Siris syndrome.

Genet Med 2019 Sep;21(9):2160-2161

University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands.

The original version of this Article contained an error in the spelling of the author Pleuntje J. van der Sluijs, which was incorrectly given as Eline (P. J.) van der Sluijs. This has now been corrected in both the PDF and HTML versions of the Article.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-018-0368-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6752317PMC
September 2019
-->