Publications by authors named "Gladys N Janssens"

25 Publications

  • Page 1 of 1

Targeted Temperature Management in Out-of-Hospital Cardiac Arrest With Shockable Rhythm: A Post Hoc Analysis of the Coronary Angiography After Cardiac Arrest Trial.

Crit Care Med 2021 Sep 22. Epub 2021 Sep 22.

Department of Cardiology, Amsterdam University Medical Center, location VUmc, Amsterdam, The Netherlands. Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands. Department of Intensive Care Medicine, Erasmus Medical Center, Rotterdam, The Netherlands. Department of Cardiology, Amphia Hospital, Breda, The Netherlands. Department of Intensive Care Medicine, Amphia Hospital, Breda, The Netherlands. Department of Cardiology, Rijnstate Hospital, Arnhem, The Netherlands. Department of Intensive Care Medicine, Rijnstate Hospital, Arnhem, The Netherlands. Department of Cardiology, HAGA Hospital, Den Haag, The Netherlands. Department of Intensive Care Medicine, HAGA Hospital, Den Haag, The Netherlands. Department of Cardiology, Maasstad Hospital, Rotterdam, The Netherlands. Department of Cardiology, University Medical Centre Utrecht, Utrecht, The Netherlands. Department of Intensive Care Medicine, Maasstad Hospital, Rotterdam, The Netherlands. Department of Intensive Care Medicine, Amsterdam University Medical Center, location VUmc, Amsterdam, The Netherlands. Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands. Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands. Department of Intensive Care Medicine, Maastricht University Medical Center, University Maastricht, Maastricht, The Netherlands. Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht, The Netherlands. Department of Intensive Care Medicine, Medisch Spectrum Twente, Enschede, The Netherlands. Department of Cardiology, Medisch Spectrum Twente, Enschede, The Netherlands. Department of Cardiology, Radboud University Medical Center, Nijmegen, The Netherlands. Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands. Department of Cardiology, Amsterdam University Medical Center, location AMC, Amsterdam, The Netherlands. Department of Intensive Care Medicine, Amsterdam University Medical Center, location AMC, Amsterdam, The Netherlands. Department of Cardiology, OLVG, Amsterdam, The Netherlands. Department of Intensive Care Medicine, OLVG, Amsterdam, The Netherlands. Department of Cardiology, Noord West Ziekenhuisgroep, Alkmaar, The Netherlands. Department of Intensive Care Medicine, Noord West Ziekenhuisgroep, Alkmaar, The Netherlands. Department of Cardiology, Maastricht University Medical Center, Maastricht, The Netherlands. Department of Cardiology, Scheper Hospital, Emmen, The Netherlands. Department of Cardiology, Haaglanden Medical Center, Den Haag, The Netherlands. Department of Cardiology, Isala Hospital, Zwolle, The Netherlands. Department of Cardiology, Tergooi Hospital, Blaricum, The Netherlands. Department of Cardiology, Elisabeth-Tweesteden Hospital, Tilburg, The Netherlands. Department of Epidemiology and Data Science, Amsterdam University Medical Center, location VUmc, Amsterdam, The Netherlands.

Objectives: The optimal targeted temperature in patients with shockable rhythm is unclear, and current guidelines recommend targeted temperature management with a correspondingly wide range between 32°C and 36°C. Our aim was to study survival and neurologic outcome associated with targeted temperature management strategy in postarrest patients with initial shockable rhythm.

Design: Observational substudy of the Coronary Angiography after Cardiac Arrest without ST-segment Elevation trial.

Setting: Nineteen hospitals in The Netherlands.

Patients: The Coronary Angiography after Cardiac Arrest trial randomized successfully resuscitated patients with shockable rhythm and absence of ST-segment elevation to a strategy of immediate or delayed coronary angiography. In this substudy, 459 patients treated with mild therapeutic hypothermia (32.0-34.0°C) or targeted normothermia (36.0-37.0°C) were included. Allocation to targeted temperature management strategy was at the discretion of the physician.

Interventions: None.

Measurements And Main Results: After 90 days, 171 patients (63.6%) in the mild therapeutic hypothermia group and 129 (67.9%) in the targeted normothermia group were alive (hazard ratio, 0.86 [95% CI, 0.62-1.18]; log-rank p = 0.35; adjusted odds ratio, 0.89; 95% CI, 0.45-1.72). Patients in the mild therapeutic hypothermia group had longer ICU stay (4 d [3-7 d] vs 3 d [2-5 d]; ratio of geometric means, 1.32; 95% CI, 1.15-1.51), lower blood pressures, higher lactate levels, and increased need for inotropic support. Cerebral Performance Category scores at ICU discharge and 90-day follow-up and patient-reported Mental and Physical Health Scores at 1 year were similar in the two groups.

Conclusions: In the context of out-of-hospital cardiac arrest with shockable rhythm and no ST-elevation, treatment with mild therapeutic hypothermia was not associated with improved 90-day survival compared with targeted normothermia. Neurologic outcomes at 90 days as well as patient-reported Mental and Physical Health Scores at 1 year did not differ between the groups.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/CCM.0000000000005271DOI Listing
September 2021

Left ventricular function, strain, and infarct characteristics in patients with transient ST-segment elevation myocardial infarction compared to ST-segment and non-ST-segment elevation myocardial infarctions.

Eur Heart J Cardiovasc Imaging 2021 Jul 1. Epub 2021 Jul 1.

Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.

Aims: This study aims to explore cardiovascular magnetic resonance (CMR)-derived left ventricular (LV) function, strain, and infarct size characteristics in patients with transient ST-segment elevation myocardial infarction (TSTEMI) compared to patients with ST-segment and non-ST-segment elevation myocardial infarctions (STEMI and NSTEMI, respectively).

Methods And Results: In total, 407 patients were enrolled in this multicentre observational prospective cohort study. All patients underwent CMR examination 2-8 days after the index event. CMR cine imaging was performed for functional assessment and late gadolinium enhancement to determine infarct size and identify microvascular obstruction (MVO). TSTEMI patients demonstrated the highest LV ejection fraction and the most preserved global LV strain (longitudinal, circumferential, and radial) across the three groups (overall P ≤ 0.001). The CMR-defined infarction was less frequently observed in TSTEMI than in STEMI patients [77 (65%) vs. 124 (98%), P < 0.001] but was comparable with NSTEMI patients [77 (65%) vs. 66 (70%), P = 0.44]. A remarkably smaller infarct size was seen in TSTEMI compared to STEMI patients [1.4 g (0.0-3.9) vs. 13.5 g (5.3-26.8), P < 0.001], whereas infarct size was not significantly different from that in NSTEMI patients [1.4 g (0.0-3.9) vs. 2.1 g (0.0-8.6), P = 0.06]. Whilst the presence of MVO was less frequent in TSTEMI compared to STEMI patients [5 (4%) vs. 53 (31%), P < 0.001], no significant difference was seen compared to NSTEMI patients [5 (4%) vs. 5 (5%), P = 0.72].

Conclusion: TSTEMI yielded favourable cardiac LV function, strain, and infarct-related scar mass compared to STEMI and NSTEMI. LV function and infarct characteristics of TSTEMI tend to be more similar to NSTEMI than STEMI.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/ehjci/jeab114DOI Listing
July 2021

Transient ST-elevation myocardial infarction versus persistent ST-elevation myocardial infarction. An appraisal of patient characteristics and functional outcome.

Int J Cardiol 2021 08 15;336:22-28. Epub 2021 May 15.

Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081HV Amsterdam, the Netherlands; Department of Cardiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA Nijmegen, the Netherlands. Electronic address:

Background: Up to 24% of patients presenting with ST-elevation myocardial infarction (STEMI) show resolution of ST-elevation and symptoms before revascularization. The mechanisms of spontaneous reperfusion are unclear. Given the more favorable outcome of transient STEMI, it is important to obtain further insights in differential aspects.

Methods: We compared 251 patients who presented with transient STEMI (n = 141) or persistent STEMI (n = 110). Clinical angiographic and laboratory data were collected at admission and in subset of patients additional index hemostatic data and at steady-state follow-up. Cardiac magnetic resonance imaging (CMR) was performed at 2-8 days to assess myocardial injury.

Results: Transient STEMI patients had more cardiovascular risk factors than STEMI patients, including more arterial disease and higher cholesterol values. Transient STEMI patients showed angiographically more often no intracoronary thrombus (41.1% vs. 2.7%, P < 0.001) and less often a high thrombus burden (9.2% vs. 40.0%, P < 0.001). CMR revealed microvascular obstruction less frequently (4.2% vs. 34.6%, P < 0.001) and smaller infarct size [1.4%; interquartile range (IQR), 0.0-3.7% vs. 8.8%; IQR, 3.9-17.1% of the left ventricle, P < 0.001] with a better preserved left ventricular ejection fraction (57.8 ± 6.7% vs. 52.5 ± 7.6%, P < 0.001). At steady state, fibrinolysis was higher in transient STEMI, as demonstrated with a reduced clot lysis time (89 ± 20% vs. 99 ± 25%, P = 0.03).

Conclusions: Transient STEMI is a syndrome with less angiographic thrombus burden and spontaneous infarct artery reperfusion, resulting in less myocardial injury than STEMI. The presence of a more effective fibrinolysis in transient STEMI patients may explain these differences and might provide clues for future treatment of STEMI.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijcard.2021.05.018DOI Listing
August 2021

The effect of immediate coronary angiography after cardiac arrest without ST-segment elevation on left ventricular function. A sub-study of the COACT randomised trial.

Resuscitation 2021 07 28;164:93-100. Epub 2021 Apr 28.

Department of Intensive care medicine, Noord West Ziekenhuisgroep, Alkmaar, The Netherlands.

Background: The effect of immediate coronary angiography and percutaneous coronary intervention (PCI) in patients who are successfully resuscitated after cardiac arrest in the absence of ST-segment elevation myocardial infarction (STEMI) on left ventricular function is currently unknown.

Methods: This prespecified sub-study of a multicentre trial evaluated 552 patients, successfully resuscitated from out-of-hospital cardiac arrest without signs of STEMI. Patients were randomized to either undergo immediate coronary angiography or delayed coronary angiography, after neurologic recovery. All patients underwent PCI if indicated. The main outcomes of this analysis were left ventricular ejection fraction and end-diastolic and systolic volumes assessed by cardiac magnetic resonance imaging or echocardiography.

Results: Data on left ventricular function was available for 397 patients. The mean (± standard deviation) left ventricular ejection fraction was 45.2% (±12.8) in the immediate angiography group and 48.4% (±13.2) in the delayed angiography group (mean difference: -3.19; 95% confidence interval [CI], -6.75 to 0.37). Median left ventricular end-diastolic volume was 177 ml in the immediate angiography group compared to 169 ml in the delayed angiography group (ratio of geometric means: 1.06; 95% CI, 0.95-1.19). In addition, mean left ventricular end-systolic volume was 90 ml in the immediate angiography group compared to 78 ml in the delayed angiography group (ratio of geometric means: 1.13; 95% CI 0.97-1.32).

Conclusion: In patients successfully resuscitated after out-of-hospital cardiac arrest and without signs of STEMI, immediate coronary angiography was not found to improve left ventricular dimensions or function compared with a delayed angiography strategy.

Clinical Trial Registration: Netherlands Trial Register number, NTR4973.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.resuscitation.2021.04.020DOI Listing
July 2021

Data on sex differences in one-year outcomes of out-of-hospital cardiac arrest patients without ST-segment elevation.

Data Brief 2020 Dec 12;33:106521. Epub 2020 Nov 12.

Department of Intensive care medicine, Maastricht University Medical Center, University Maastricht, Maastricht, the Netherlands.

Sex differences in out-of-hospital cardiac arrest (OHCA) patients are increasingly recognized. Although it has been found that post-resuscitated women are less likely to have significant coronary artery disease (CAD) than men, data on follow-up in these patients are limited. Data for this data in brief article was obtained as a part of the randomized controlled Coronary Angiography after Cardiac Arrest without ST-segment elevation (COACT) trial. The data supplements the manuscript "Sex differences in out-of-hospital cardiac arrest patients without ST-segment elevation: A COACT trial substudy" were it was found that women were less likely to have significant CAD including chronic total occlusions, and had worse survival when CAD was present. The dataset presented in this paper describes sex differences on interventions, implantable-cardioverter defibrillator (ICD) shocks and hospitalizations due to heart failure during one-year follow-up in patients successfully resuscitated after OHCA. Data was derived through a telephone interview at one year with the patient or general practitioner. Patients in this randomized dataset reflects a homogenous study population, which can be valuable to further build on research regarding long-term sex differences and to further improve cardiac care.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dib.2020.106521DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7691722PMC
December 2020

Sex differences in patients with out-of-hospital cardiac arrest without ST-segment elevation: A COACT trial substudy.

Resuscitation 2021 01 12;158:14-22. Epub 2020 Nov 12.

Department of Intensive care medicine, Maastricht University Medical Centre, University Maastricht, Maastricht, the Netherlands.

Background: Whether sex is associated with outcomes of out-of-hospital cardiac arrest (OHCA) is unclear.

Objectives: This study examined sex differences in survival in patients with OHCA without ST-segment elevation myocardial infarction (STEMI).

Methods: Using data from the randomized controlled Coronary Angiography after Cardiac Arrest (COACT) trial, the primary point of interest was sex differences in OHCA-related one-year survival. Secondary points of interest included the benefit of immediate coronary angiography compared to delayed angiography until after neurologic recovery, angiographic and clinical outcomes.

Results: In total, 522 patients (79.1% men) were included. Overall one-year survival was 59.6% in women and 63.4% in men (HR 1.18; 95% CI: 0.76-1.81;p = 0.47). No cardiovascular risk factors were found that modified survival. Women less often had significant coronary artery disease (CAD) (37.0% vs. 71.3%;p < 0.001), but when present, they had a worse prognosis than women without CAD (HR 3.06; 95% CI 1.31-7.19;p = 0.01). This was not the case for men (HR 1.05; 95% CI 0.67-1.65;p = 0.83). In both sexes, immediate coronary angiography did not improve one-year survival compared to delayed angiography (women, odds ratio (OR) 0.87; 95% CI 0.58-1.30;p = 0.49; vs. men, OR 0.97; 95% CI 0.45-2.09;p = 0.93).

Conclusion: In OHCA patients without STEMI, we found no sex differences in overall one-year survival. Women less often had significant CAD, but when CAD was present they had worse survival than women without CAD. This was not the case for men. Both sexes did not benefit from a strategy of immediate coronary angiography as compared to delayed strategy with respect to one-year survival.

Clinical Trial Registration Number: Netherlands trial register (NTR) 4973.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.resuscitation.2020.10.026DOI Listing
January 2021

Coronary Angiography After Cardiac Arrest Without ST Segment Elevation: One-Year Outcomes of the COACT Randomized Clinical Trial.

JAMA Cardiol 2020 Dec;5(12):1358-1365

Department of Cardiology, Scheper Hospital, Emmen, the Netherlands.

Importance: Ischemic heart disease is a common cause of cardiac arrest. However, randomized data on long-term clinical outcomes of immediate coronary angiography and percutaneous coronary intervention (PCI) in patients successfully resuscitated from cardiac arrest in the absence of ST segment elevation myocardial infarction (STEMI) are lacking.

Objective: To determine whether immediate coronary angiography improves clinical outcomes at 1 year in patients after cardiac arrest without signs of STEMI, compared with a delayed coronary angiography strategy.

Design, Setting, And Participants: A prespecified analysis of a multicenter, open-label, randomized clinical trial evaluated 552 patients who were enrolled in 19 Dutch centers between January 8, 2015, and July 17, 2018. The study included patients who experienced out-of-hospital cardiac arrest with a shockable rhythm who were successfully resuscitated without signs of STEMI. Follow-up was performed at 1 year. Data were analyzed, using the intention-to-treat principle, between August 29 and October 10, 2019.

Interventions: Immediate coronary angiography and PCI if indicated or coronary angiography and PCI if indicated, delayed until after neurologic recovery.

Main Outcomes And Measures: Survival, myocardial infarction, revascularization, implantable cardiac defibrillator shock, quality of life, hospitalization for heart failure, and the composite of death or myocardial infarction or revascularization after 1 year.

Results: At 1 year, data on 522 of 552 patients (94.6%) were available for analysis. Of these patients, 413 were men (79.1%); mean (SD) age was 65.4 (12.3) years. A total of 162 of 264 patients (61.4%) in the immediate angiography group and 165 of 258 patients (64.0%) in the delayed angiography group were alive (odds ratio, 0.90; 95% CI, 0.63-1.28). The composite end point of death, myocardial infarction, or repeated revascularization since the index hospitalization was met in 112 patients (42.9%) in the immediate group and 104 patients (40.6%) in the delayed group (odds ratio, 1.10; 95% CI, 0.77-1.56). No significant differences between the groups were observed for the other outcomes at 1-year follow-up. For example, the rate of ICD shocks was 20.4% in the immediate group and 16.2% in the delayed group (odds ratio, 1.32; 95% CI, 0.66-2.64).

Conclusions And Relevance: In this trial of patients successfully resuscitated after out-of-hospital cardiac arrest and without signs of STEMI, a strategy of immediate angiography was not found to be superior to a strategy of delayed angiography with respect to clinical outcomes at 1 year. Coronary angiography in this patient group can therefore be delayed until after neurologic recovery without affecting outcomes.

Trial Registration: trialregister.nl Identifier: NTR4973.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1001/jamacardio.2020.3670DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7489423PMC
December 2020

Platelet Inhibition, Endothelial Function, and Clinical Outcome in Patients Presenting With ST-Segment-Elevation Myocardial Infarction Randomized to Ticagrelor Versus Prasugrel Maintenance Therapy: Long-Term Follow-Up of the REDUCE-MVI Trial.

J Am Heart Assoc 2020 03 3;9(5):e014411. Epub 2020 Mar 3.

Department of Cardiology Amsterdam UMC Vrije Universiteit Amsterdam Amsterdam Cardiovascular Sciences Amsterdam the Netherlands.

Background Off-target properties of ticagrelor might reduce microvascular injury and improve clinical outcome in patients with ST-segment-elevation myocardial infarction. The REDUCE-MVI (Evaluation of Microvascular Injury in Revascularized Patients with ST-Segment-Elevation Myocardial Infarction Treated With Ticagrelor Versus Prasugrel) trial reported no benefit of ticagrelor regarding microvascular function at 1 month. We now present the follow-up data up to 1.5 years. Methods and Results We randomized 110 patients with ST-segment-elevation myocardial infarction to either ticagrelor 90 mg twice daily or prasugrel 10 mg once a day. Platelet inhibition and peripheral endothelial function measurements including calculation of the reactive hyperemia index and clinical follow-up were obtained up to 1.5 years. Major adverse clinical events and bleedings were scored. An intention to treat and a per-protocol analysis were performed. There were no between-group differences in platelet inhibition and endothelial function. At 1 year the reactive hyperemia index in the ticagrelor group was 0.66±0.26 versus 0.61±0.28 in the prasugrel group (=0.31). Platelet inhibition was lower at 1 month versus 1 year in the total study population (61% [42%-81%] versus 83% [61%-95%]; <0.001), and per-protocol platelet inhibition was higher in patients randomized to ticagrelor versus prasugrel at 1 year (91% [83%-97%] versus 82% [65%-92%]; =0.002). There was an improvement in intention to treat endothelial function in patients randomized to ticagrelor (=0.03) but not in patients randomized to prasugrel (=0.88). Major adverse clinical events (10% versus 14%; =0.54) and bleedings (47% versus 63%; =0.10) were similar in the intention-to-treat analysis in both groups. Conclusions Platelet inhibition at 1 year was higher in the ticagrelor group, without an accompanying increase in bleedings. Endothelial function improved over time in ticagrelor patients, while it did not change in the prasugrel group. Clinical Trial Registration URL: https://www.clinicaltrials.gov/. Unique Identifier: NCT02422888.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/JAHA.119.014411DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7335553PMC
March 2020

Cardiac Magnetic Resonance for Evaluating Nonculprit Lesions After Myocardial Infarction: Comparison With Fractional Flow Reserve.

JACC Cardiovasc Imaging 2020 03 18;13(3):715-728. Epub 2019 Sep 18.

Department of Cardiology, Amsterdam University Medical Centers, location VUmc, Amsterdam, the Netherlands; Department of Cardiology, Radboud University Medical Centers, Nijmegen, the Netherlands. Electronic address:

Objectives: This study sought to determine the agreement between cardiac magnetic resonance (CMR) imaging and invasive measurements of fractional flow reserve (FFR) in the evaluation of nonculprit lesions after ST-segment elevation myocardial infarction (STEMI). In addition, we investigated whether fully quantitative analysis of myocardial perfusion is superior to semiquantitative and visual analysis.

Background: The agreement between CMR and FFR in the evaluation of nonculprit lesions in patients with STEMI with multivessel disease is unknown.

Methods: Seventy-seven patients with STEMI with at least 1 intermediate (diameter stenosis 50% to 90%) nonculprit lesion underwent CMR and invasive coronary angiography in conjunction with FFR measurements at 1 month after primary intervention. The imaging protocol included stress and rest perfusion, cine imaging, and late gadolinium enhancement. Fully quantitative, semiquantitative, and visual analysis of myocardial perfusion were compared against a reference of FFR. Hemodynamically obstructive was defined as FFR ≤0.80.

Results: Hemodynamically obstructive nonculprit lesions were present in 31 (40%) patients. Visual analysis displayed an area under the curve (AUC) of 0.74 (95% confidence interval [CI]: 0.62 to 0.83), with a sensitivity of 73% and a specificity of 70%. For semiquantitative analysis, the relative upslope of the stress signal intensity time curve and the relative upslope derived myocardial flow reserve had respective AUCs of 0.66 (95% CI: 0.54 to 0.77) and 0.71 (95% CI: 0.59 to 0.81). Fully quantitative analysis did not augment diagnostic performance (all p > 0.05). Stress myocardial blood flow displayed an AUC of 0.76 (95% CI: 0.64 to 0.85), with a sensitivity of 69% and a specificity of 77%. Similarly, MFR displayed an AUC of 0.82 (95% CI: 0.71 to 0.90), with a sensitivity of 82% and a specificity of 71%.

Conclusions: CMR and FFR have moderate-good agreement in the evaluation of nonculprit lesions in patients with STEMI with multivessel disease. Fully quantitative, semiquantitative, and visual analysis yield similar diagnostic performance.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcmg.2019.07.019DOI Listing
March 2020

1-Year Outcomes of Delayed Versus Immediate Intervention in Patients With Transient ST-Segment Elevation Myocardial Infarction.

JACC Cardiovasc Interv 2019 11 2;12(22):2272-2282. Epub 2019 Sep 2.

Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Cardiology, Radboud University Medical Center, Nijmegen, the Netherlands. Electronic address:

Objectives: The aim of the present study was to determine the effect of a delayed versus an immediate invasive approach on final infarct size and clinical outcome up to 1 year.

Background: Up to 24% of patients with acute coronary syndromes present with ST-segment elevation myocardial infarction (STEMI) but show complete resolution of ST-segment elevation and symptoms before revascularization. Current guidelines do not clearly state whether these patients with transient STEMI should be treated with a STEMI-like or non-ST-segment elevation acute coronary syndrome-like intervention strategy.

Methods: In this multicenter trial, 142 patients with transient STEMI were randomized 1:1 to either delayed or immediate coronary intervention. Cardiac magnetic resonance imaging was performed at 4 days and at 4-month follow-up to assess infarct size and myocardial function. Clinical follow-up was performed at 4 and 12 months.

Results: In the delayed (22.7 h) and the immediate (0.4 h) invasive groups, final infarct size as a percentage of the left ventricle was very small (0.4% [interquartile range: 0.0% to 2.5%] vs. 0.4% [interquartile range: 0.0% to 3.5%]; p = 0.79), and left ventricular function was good (mean ejection fraction 59.3 ± 6.5% vs. 59.9 ± 5.4%; p = 0.63). In addition, the overall occurrence of major adverse cardiac events, consisting of death, recurrent infarction, and target lesion revascularization, up to 1 year was low and not different between both groups (5.7% vs. 4.4%, respectively; p = 1.00).

Conclusions: At follow-up, patients with transient STEMI have limited infarction and well-preserved myocardial function in general, and delayed or immediate revascularization has no effect on functional outcome and clinical events up to 1 year.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcin.2019.07.018DOI Listing
November 2019

Coronary Angiography after Cardiac Arrest without ST-Segment Elevation. Reply.

N Engl J Med 2019 07;381(2):189-190

Amsterdam University Medical Center, Amsterdam, the Netherlands

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1056/NEJMc1906523DOI Listing
July 2019

Temporal Changes in Coronary Hyperemic and Resting Hemodynamic Indices in Nonculprit Vessels of Patients With ST-Segment Elevation Myocardial Infarction.

JAMA Cardiol 2019 08;4(8):736-744

Department of Cardiology, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, the Netherlands.

Importance: Percutaneous coronary intervention (PCI) of nonculprit vessels among patients with ST-segment elevation myocardial infarction (STEMI) is associated with improved clinical outcome compared with culprit vessel-only PCI. Fractional flow reserve (FFR) and coronary flow reserve are hyperemic indices used to guide revascularization. Recently, instantaneous wave-free ratio was introduced as a nonhyperemic alternative to FFR. Whether these indices can be used in the acute setting of STEMI continues to be investigated.

Objective: To assess the value of hemodynamic indices in nonculprit vessels of patients with STEMI from the index event to 1-month follow-up.

Design, Setting, And Participants: This substudy of the Reducing Micro Vascular Dysfunction in Revascularized STEMI Patients by Off-target Properties of Ticagrelor (REDUCE-MVI) randomized clinical trial enrolled 98 patients with STEMI who had an angiographic intermediate stenosis in at least 1 nonculprit vessel. Patient enrollment was between May 1, 2015, and September 19, 2017. After successful primary PCI, nonculprit intracoronary hemodynamic measurements were performed and repeated at 1-month follow-up. Cardiac magnetic resonance imaging was performed from 2 to 7 days and 1 month after primary PCI.

Main Outcomes And Measures: The value of nonculprit instantaneous wave-free ratio, FFR, coronary flow reserve, hyperemic index of microcirculatory resistance, and resting microcirculatory resistance from the index event to 1-month follow-up.

Results: Of 73 patients with STEMI included in the final analysis, 59 (80.8%) were male, with a mean (SD) age of 60.8 (9.9) years. Instantaneous wave-free ratio (SD) did not change significantly (0.93 [0.07] vs 0.94 [0.06]; P = .12) and there was no change in resting distal pressure/aortic pressure (mean [SD], 0.94 [0.06] vs 0.95 [0.06]; P = .25) from the acute moment to 1-month follow-up. The FFR decreased (mean [SD], 0.88 [0.07] vs 0.86 [0.09]; P = .001) whereas coronary flow reserve increased (mean [SD], 2.9 [1.4] vs 4.1 [2.2]; P < .001). Hyperemic index of microcirculatory resistance decreased and resting microcirculatory resistance increased from the acute moment to follow-up. The decrease in distal pressure from rest to hyperemia was smaller at the acute moment vs follow-up (mean [SD], 10.6 [11.2] mm Hg vs 14.1 [14.2] mm Hg; P = .05). This blunted acute hyperemic response correlated with final infarct size (ρ, -0.29; P = .02). The resistive reserve ratio was lower at the acute moment vs follow-up (mean [SD], 3.4 [1.7] vs 5.0 [2.7]; P < .001).

Conclusions And Relevance: In the acute setting of STEMI, nonculprit coronary flow reserve was reduced and FFR was augmented, whereas instantaneous wave-free ratio was not altered. These results may be explained by an increased hyperemic microvascular resistance and a blunted adenosine responsiveness at the acute moment that was associated with infarct size.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1001/jamacardio.2019.2138DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6613339PMC
August 2019

ST-resolution and spontaneous reperfusion in patients with transient ST-segment elevation myocardial infarction.

Eur Heart J 2019 08;40(29):2465

Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/eurheartj/ehz333DOI Listing
August 2019

Coronary Angiography after Cardiac Arrest without ST-Segment Elevation.

N Engl J Med 2019 Apr 18;380(15):1397-1407. Epub 2019 Mar 18.

From the Departments of Cardiology (J.S.L., G.N.J., N.W.H., N.R.), Intensive Care Medicine (P.W.G.E., H.M.O.-S.), and Epidemiology and Biostatistics (P.M.V.), Amsterdam University Medical Center VUmc, the Departments of Cardiology (J.P.H.) and Intensive Care Medicine (A.P.J.V.), Amsterdam University Medical Center AMC, and the Departments of Cardiology (M.A.V.) and Intensive Care Medicine (B.B.), Onze Lieve Vrouwe Gasthuis, Amsterdam, the Thorax Center, Erasmus Medical Center (L.S.D.J., E.A.D.), and the Departments of Cardiology (G.J.V.) and Intensive Care Medicine (B.J.W.E.), Maasstad Hospital, Rotterdam, the Departments of Cardiology (M. Meuwissen) and Intensive Care Medicine (T.A.R.), Amphia Hospital, Breda, the Departments of Cardiology (H.A.B.) and Intensive Care Medicine (M.J.B.), Rijnstate Hospital, Arnhem, the Departments of Cardiology (G.B.B.) and Intensive Care Medicine (R.B.), Haga Hospital, and the Department of Cardiology, Haaglanden Medical Center (P.V.O.), The Hague, the Departments of Cardiology (P.H.) and Intensive Care Medicine (I.C.C.H.), University of Groningen, Groningen, the Departments of Cardiology (M.V.) and Intensive Care Medicine (J.J.H.), University Medical Center Utrecht, Utrecht, the Departments of Intensive Care Medicine (A.B.) and Cardiology (M.S.), Medisch Spectrum Twente, Enschede, the Departments of Cardiology (C.C., N.R.) and Intensive Care Medicine (H.H.), Radboud University Medical Center, Nijmegen, the Departments of Cardiology (T.A.C.M.H.) and Intensive Care Medicine (W.R.), Noordwest Ziekenhuisgroep, Alkmaar, the Departments of Intensive Care Medicine (T.S.R.D.) and Cardiology (H.J.G.M.C.), Maastricht University Medical Center, Maastricht, the Department of Cardiology, Scheper Hospital, Emmen (G.A.J.J.), the Department of Cardiology, Isala Hospital, Zwolle (M.T.M.G.), the Department of Cardiology, Tergooi Hospital, Blaricum (K.P.), and the Department of Cardiology, Elisabeth-Tweesteden Hospital, Tilburg (M. Magro) - all in the Netherlands.

Background: Ischemic heart disease is a major cause of out-of-hospital cardiac arrest. The role of immediate coronary angiography and percutaneous coronary intervention (PCI) in the treatment of patients who have been successfully resuscitated after cardiac arrest in the absence of ST-segment elevation myocardial infarction (STEMI) remains uncertain.

Methods: In this multicenter trial, we randomly assigned 552 patients who had cardiac arrest without signs of STEMI to undergo immediate coronary angiography or coronary angiography that was delayed until after neurologic recovery. All patients underwent PCI if indicated. The primary end point was survival at 90 days. Secondary end points included survival at 90 days with good cerebral performance or mild or moderate disability, myocardial injury, duration of catecholamine support, markers of shock, recurrence of ventricular tachycardia, duration of mechanical ventilation, major bleeding, occurrence of acute kidney injury, need for renal-replacement therapy, time to target temperature, and neurologic status at discharge from the intensive care unit.

Results: At 90 days, 176 of 273 patients (64.5%) in the immediate angiography group and 178 of 265 patients (67.2%) in the delayed angiography group were alive (odds ratio, 0.89; 95% confidence interval [CI], 0.62 to 1.27; P = 0.51). The median time to target temperature was 5.4 hours in the immediate angiography group and 4.7 hours in the delayed angiography group (ratio of geometric means, 1.19; 95% CI, 1.04 to 1.36). No significant differences between the groups were found in the remaining secondary end points.

Conclusions: Among patients who had been successfully resuscitated after out-of-hospital cardiac arrest and had no signs of STEMI, a strategy of immediate angiography was not found to be better than a strategy of delayed angiography with respect to overall survival at 90 days. (Funded by the Netherlands Heart Institute and others; COACT Netherlands Trial Register number, NTR4973.).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1056/NEJMoa1816897DOI Listing
April 2019

Evaluation of Microvascular Injury in Revascularized Patients With ST-Segment-Elevation Myocardial Infarction Treated With Ticagrelor Versus Prasugrel.

Circulation 2019 01;139(5):636-646

Department of Cardiology, VU University Medical Center, Amsterdam, The Netherlands (M.A.H.v.L., N.W.v.d.H., G.N.J., H.E., A.N., J.S.L., G.A.d.W., A.C.v.R., R.N., N.v.R.).

Background: Despite successful restoration of epicardial vessel patency with primary percutaneous coronary intervention, coronary microvascular injury occurs in a large proportion of patients with ST-segment-elevation myocardial infarction, adversely affecting clinical and functional outcome. Ticagrelor has been reported to increase plasma adenosine levels, which might have a protective effect on the microcirculation. We investigated whether ticagrelor maintenance therapy after revascularized ST-segment-elevation myocardial infarction is associated with less coronary microvascular injury compared to prasugrel maintenance therapy.

Methods: A total of 110 patients with ST-segment-elevation myocardial infarction received a loading dose of ticagrelor and were randomized to maintenance therapy of ticagrelor (n=56) or prasugrel (n=54) after primary percutaneous coronary intervention. The primary outcome was coronary microvascular injury at 1 month, as determined with the index of microcirculatory resistance in the infarct-related artery. Cardiovascular magnetic resonance imaging was performed during the acute phase and at 1 month.

Results: The primary outcome of index of microcirculatory resistance was not superior in ticagrelor- or prasugrel-treated patients (ticagrelor, 21 [interquartile range, 15-39] U; prasugrel, 18 [interquartile range, 11-29] U; P=0.08). Recovery of microcirculatory resistance over time was not better in patients with ticagrelor versus prasugrel (ticagrelor, -13.9 U; prasugrel, -13.5 U; P=0.96). Intramyocardial hemorrhage was observed less frequently in patients receiving ticagrelor (23% versus 43%; P=0.04). At 1 month, no difference in infarct size was observed (ticagrelor, 7.6 [interquartile range, 3.7-14.4] g, prasugrel 9.9 [interquartile range, 5.7-16.6] g; P=0.17). The occurrence of microvascular obstruction was not different in patients on ticagrelor (28%) or prasugrel (41%; P=0.35). Plasma adenosine concentrations were not different during the index procedure and during maintenance therapy with ticagrelor or prasugrel.

Conclusions: In patients with ST-segment-elevation myocardial infarction, ticagrelor maintenance therapy was not superior to prasugrel in preventing coronary microvascular injury in the infarct-related territory as assessed by the index of microcirculatory resistance, and this resulted in a comparable infarct size at 1 month.

Clinical Trial Registration: URL: https://www.clinicaltrials.gov . Unique identifier: NCT02422888.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCULATIONAHA.118.035931DOI Listing
January 2019

Timing of revascularization in patients with transient ST-segment elevation myocardial infarction: a randomized clinical trial.

Eur Heart J 2019 01;40(3):283-291

Department of Cardiology, Amsterdam UMC, VU University Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands.

Aims: Patients with acute coronary syndrome who present initially with ST-elevation on the electrocardiogram but, subsequently, show complete normalization of the ST-segment and relief of symptoms before reperfusion therapy are referred to as transient ST-segment elevation myocardial infarction (STEMI) and pose a therapeutic challenge. It is unclear what the optimal timing of revascularization is for these patients and whether they should be treated with a STEMI-like or a non-ST-segment elevation myocardial infarction (NSTEMI)-like invasive approach. The aim of the study is to determine the effect of an immediate vs. a delayed invasive strategy on infarct size measured by cardiac magnetic resonance imaging (CMR).

Methods And Results: In a randomized clinical trial, 142 patients with transient STEMI with symptoms of any duration were randomized to an immediate (STEMI-like) [0.3 h; interquartile range (IQR) 0.2-0.7 h] or a delayed (NSTEMI-like) invasive strategy (22.7 h; IQR 18.2-27.3 h). Infarct size as percentage of the left ventricular myocardial mass measured by CMR at day four was generally small and not different between the immediate and the delayed invasive group (1.3%; IQR 0.0-3.5% vs. 1.5% IQR 0.0-4.1%, P = 0.48). By intention to treat, there was no difference in major adverse cardiac events (MACE), defined as death, reinfarction, or target vessel revascularization at 30 days (2.9% vs. 2.8%, P = 1.00). However, four additional patients (5.6%) in the delayed invasive strategy required urgent intervention due to signs and symptoms of reinfarction while awaiting angiography.

Conclusion: Overall, infarct size in transient STEMI is small and is not influenced by an immediate or delayed invasive strategy. In addition, short-term MACE was low and not different between the treatment groups.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/eurheartj/ehy651DOI Listing
January 2019

Letter by Lemkes et al Regarding Article, "Emergency Coronary Angiography After Out-of-Hospital Cardiac Arrest: Is It Essential or Futile?"

Circ Cardiovasc Interv 2018 08;11(8):e007118

Department of Cardiology, VU University Medical Center, Amsterdam, the Netherlands (J.S.L., G.N.J., N.v.R.).

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCINTERVENTIONS.118.007118DOI Listing
August 2018

Efficacy of different cooling technologies for therapeutic temperature management: A prospective intervention study.

Resuscitation 2018 03 26;124:14-20. Epub 2017 Dec 26.

Department of Critical Care Medicine, University of Pittsburgh Medical Center, 200 Lothrop St, Pittsburgh, PA 15213, United States. Electronic address:

Background: Mild therapeutic hypothermia (32-36 °C) is associated with improved outcomes in patients with brain injury after cardiac arrest (CA). Various devices are available to induce and maintain hypothermia, but few studies have compared the performance of these devices. We performed a prospective study to compare four frequently used cooling systems in inducing and maintaining hypothermia followed by controlled rewarming.

Methods: We performed a prospective multi-centered study in ten ICU's in three hospitals within the UPMC health system. Four different cooling technologies (seven cooling methods in total) were studied: two external water-circulating cooling blankets (Meditherm® and Blanketrol®), gel-coated adhesive cooling pads (Arctic Sun®), and endovascular cooling catheters with balloons circulating ice-cold saline (Thermogard®). For the latter system we studied three different types of catheter with two, three or four water-circulating balloons, respectively. In contrast to previous studies, we not only studied the cooling rate (i.e., time to target temperature) in the induction phase, but also the percentage of the time during the maintenance phase that temperature was on target ±0.5 °C, and the efficacy of devices to control rewarming. We believe that these are more important indicators of device performance than induction speed alone.

Results: 129 consecutive patients admitted after CA and treated with hypothermia were screened, and 120 were enrolled in the study. Two researchers dedicated fulltime to this study monitored TH treatment in all patients, including antishivering measures, additional cooling measures used (e.g. icepacks and cold fluid infusion), and all other issues related to temperature management. Baseline characteristics were similar for all groups. Cooling rates were 2.06 ± 1.12 °C/h for endovascular cooling, 1.49 ± 0.82 for Arctic sun, 0.61 ± 0.36 for Meditherm and 1.22 ± 1.12 for Blanketrol. Time within target range ±0.5 °C was 97.3 ± 6.0% for Thermogard, 81.8 ± 25.2% for Arctic Sun, 57.4 ± 29.3% for Meditherm, and 64.5 ± 20.1% for Blanketrol. The following differences were significant: Thermogard vs. Meditherm (p < 0.01), Thermogard vs. Blanketrol (p < 0.01), and Arctic Sun vs. Meditherm (p < 0.02). No major complications occurred with any device.

Conclusions: Endovascular cooling and gel-adhesive pads provide more rapid hypothermia induction and more effective temperature maintenance compared to water-circulating cooling blankets. This applied to induction speed, but (more importantly) also to time within target range during maintenance.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.resuscitation.2017.12.026DOI Listing
March 2018

Body Mass Index Is Associated With Microvascular Endothelial Dysfunction in Patients With Treated Metabolic Risk Factors and Suspected Coronary Artery Disease.

J Am Heart Assoc 2017 Sep 14;6(9). Epub 2017 Sep 14.

Department of Cardiology, VU University Medical Center, Amsterdam, the Netherlands

Background: Obesity is key feature of the metabolic syndrome and is associated with high cardiovascular morbidity and mortality. Obesity is associated with macrovascular endothelial dysfunction, a determinant of outcome in patients with coronary artery disease. Here, we compared the influence of obesity on microvascular endothelial function to that of established cardiovascular risk factors such as diabetes mellitus, hypertension, hypercholesterolemia, and smoking in patients with suspected coronary artery disease.

Methods And Results: Endothelial function was assessed during postocclusive reactive hyperemia of the brachial artery and downstream microvascular beds in 108 patients who were scheduled for coronary angiography. In all patients, microvascular vasodilation was assessed using peripheral arterial tonometry; laser Doppler flowmetry and digital thermal monitoring were performed. Body mass index was significantly associated with decreased endothelium-dependent vasodilatation measured with peripheral arterial tonometry (=0.23, =0.02), laser Doppler flowmetry (=0.30, <0.01), and digital thermal monitoring (=0.30, <0.01). In contrast, hypertension, hypercholesterolemia, and smoking had no influence on microvascular vasodilatation. Especially in diabetic patients, endothelial function was not significantly reduced (control versus diabetes mellitus, mean±SEM or median [interquartile range], peripheral arterial tonometry: 1.90±0.20 versus 1.67±0.20, =0.19, laser Doppler flowmetry: 728% [interquartile range, 427-1110] versus 589% [interquartile range, 320-1067] =0.28, and digital thermal monitoring: 6.6±1.0% versus 2.5±1.7%, =0.08). In multivariate linear regression analysis, body mass index was the only risk factor that significantly attenuated endothelium-dependent vasodilatation using all 3 microvascular function tests.

Conclusions: Higher body mass index is associated with reduced endothelial function in patients with suspected coronary artery disease, even after adjustment for treated diabetes mellitus, hypertension, hypercholesterolemia, and smoking.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/JAHA.117.006082DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5634274PMC
September 2017

Coronary angiography and percutaneous coronary intervention after out-of-hospital cardiac arrest: major leaps towards improved survival?

J Thorac Dis 2017 Jan;9(1):5-7

Department of Cardiology, Institute of Cardiovascular Research ICaR-VU, VU University Medical Center, Amsterdam, The Netherlands.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.21037/jtd.2017.01.02DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5303092PMC
January 2017

Endothelial dysfunction and the occurrence of radial artery spasm during transradial coronary procedures: the ACRA-Spasm study.

EuroIntervention 2016 Nov;12(10):1263-1270

Department of Cardiology, VU University Medical Center, Amsterdam, The Netherlands.

Aims: The aim of this study was to analyse the relation between endothelial dysfunction (ED) and the occurrence of radial artery spasm (RAS) during transradial coronary procedures.

Methods And Results: From May 2014 to June 2015, endothelial function was assessed by EndoPAT and FMD before the procedure in 165 patients referred for coronary angiography or intervention. The primary endpoint was RAS, defined by patient's symptoms and procedural characteristics. The mean age of the study population was 63 years and 71% were male. In total 16% of the patients experienced RAS. The incidence of RAS did not differ between patients with and without ED (13.8% vs. 20.2%, OR 0.63, 95% CI: 0.25-1.58, p=0.32). The strongest predictors of RAS were a ratio of radial artery inner diameter and sheath outer diameter smaller than 1 (OR 4.7, 95% CI: 1.35-16.5, p=0.009) and a combination of clinical characteristics presented as an RAS risk score of at least 4 (p=0.007, OR 3.7, 95% CI: 1.37-9.89).

Conclusions: Endothelial dysfunction was not found to be a predictor of the occurrence of radial artery spasm in a cohort of patients undergoing elective heart catheterisation. Radial artery-sheath mismatch is the strongest pre-procedural predictor of RAS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4244/EIJV12I10A207DOI Listing
November 2016

Coronary angiography after cardiac arrest: Rationale and design of the COACT trial.

Am Heart J 2016 Oct 14;180:39-45. Epub 2016 Jul 14.

Department of Cardiology, VU University Medical Centre, Amsterdam, the Netherlands.

Background: Ischemic heart disease is a major cause of out-of-hospital cardiac arrest. The role of immediate coronary angiography (CAG) and percutaneous coronary intervention (PCI) after restoration of spontaneous circulation following cardiac arrest in the absence of ST-segment elevation myocardial infarction (STEMI) remains debated.

Hypothesis: We hypothesize that immediate CAG and PCI, if indicated, will improve 90-day survival in post-cardiac arrest patients without signs of STEMI.

Design: In a prospective, multicenter, randomized controlled clinical trial, 552 post-cardiac arrest patients with restoration of spontaneous circulation and without signs of STEMI will be randomized in a 1:1 fashion to immediate CAG and PCI (within 2 hours) versus initial deferral with CAG and PCI after neurological recovery. The primary end point of the study is 90-day survival. The secondary end points will include 90-day survival with good cerebral performance or minor/moderate disability, myocardial injury, duration of inotropic support, occurrence of acute kidney injury, need for renal replacement therapy, time to targeted temperature control, neurological status at intensive care unit discharge, markers of shock, recurrence of ventricular tachycardia, duration of mechanical ventilation, and reasons for discontinuation of treatment.

Summary: The COACT trial is a multicenter, randomized, controlled clinical study that will evaluate the effect of an immediate invasive coronary strategy in post-cardiac arrest patients without STEMI on 90-day survival.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ahj.2016.06.025DOI Listing
October 2016

Reducing Microvascular Dysfunction in Revascularized Patients with ST-Elevation Myocardial Infarction by Off-Target Properties of Ticagrelor versus Prasugrel. Rationale and Design of the REDUCE-MVI Study.

J Cardiovasc Transl Res 2016 06 21;9(3):249-256. Epub 2016 Apr 21.

Department of Cardiology, Institute of Cardiovascular Research ICaR-VU, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.

Microvascular injury is present in a large proportion of patients with ST-elevation myocardial infarction (STEMI) despite successful revascularization. Ticagrelor potentially mitigates this process by exerting additional adenosine-mediated effects. This study aims to determine whether ticagrelor is associated with a better microvascular function compared to prasugrel as maintenance therapy after STEMI. A total of 110 patients presenting with STEMI and additional intermediate stenosis in another coronary artery will be studied after successful percutaneous coronary intervention (PCI) of the infarct-related artery. Patients will be randomized to treatment with ticagrelor or prasugrel for 1 year. FFR-guided PCI of the non-infarct-related artery will be performed at 1 month. Microvascular function will be assessed by measurement of the index of microcirculatory resistance (IMR) in the infarct-related artery and non-infarct-related artery, immediately after primary PCI and after 1 month. The REDUCE-MVI study will establish whether ticagrelor as a maintenance therapy may improve microvascular function in patients after revascularized STEMI.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12265-016-9691-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4873532PMC
June 2016

Determinants of heat generation in patients treated with therapeutic hypothermia following cardiac arrest.

J Am Heart Assoc 2014 Apr 29;3(3):e000580. Epub 2014 Apr 29.

Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA.

Background: Therapeutic hypothermia (TH) is recommended to reduce ischemic brain injury after cardiac arrest. The variables that predict heat generation by patients receiving TH are uncertain, as is how this heat generation relates to neurologic outcome. We hypothesized that patient characteristics, medication use, inflammation, and organ injury would be associated with heat generation. We further hypothesized that neurologic outcome would be most strongly associated with heat generation.

Methods And Results: Surface and intravascular cooling devices were used to provide TH in 57 consecutive cardiac arrest patients. Device water temperatures during the maintenance (33°C) phase were collected. Patient heat generation was quantified as the "heat index" (HI), which was the inverse average water temperature over a minimum of 2 hours of maintenance hypothermia. Variables measuring reduced ischemic injury and improved baseline health were significantly associated with HI. After controlling for presenting rhythm, a higher HI was independently associated with favorable disposition (OR=2.2; 95% CI 1.2 to 4.1; P=0.014) and favorable Cerebral Performance Category (OR=1.8; 95% CI 1.0 to 3.1; P=0.035). Higher HI predicted favorable disposition (receiver-operator area under the curve 0.71, P=0.029). HI was linearly correlated with arteriovenous CO2 (r=0.69; P=0.041) but not O2 (r=0.13; P=0.741) gradients.

Conclusions: In cardiac arrest patients receiving TH, greater heat generation is associated with better baseline health, reduced ischemic injury, and improved neurologic function, which results in higher metabolism. HI can control for confounding effects of patient heat generation in future clinical trials of rapid TH and offers early prognostic information.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/JAHA.113.000580DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4309044PMC
April 2014
-->